Abstract 1219P
Background
Prognostic markers in routine clinical practice of breast cancer are often assessed using RNA based multi-gene panels that are depending on a fluctuating tumor purity. Multiplex fluorescence immunohistochemistry (mfIHC) holds the potential for improved risk assessment.
Methods
To enable automated prognosis marker quantification, we have developed and validated a framework for automated breast cancer detection involving three different artificial intelligence analysis steps and an algorithm for cell-distance analysis using BLEACH&STAIN multiplex fluorescence immunohistochemistry. Pan-cytokeratin (panCK) antibodies were used to detect epithelial cells and antibodies directed against Myosin and p63 were used to identify basal cells.
Results
The optimal distance between Myosin+ and p63+ basal cells and benign panCK+ cells was identified as 25 μm in breast cancer and used – combined with deep learning-based algorithms – to exclude benign glands from the analysis. Our framework discriminated normal glands from malignant glands with an accuracy of 98.4% (95% confidence interval [CI]: 97.4 – 99.3). The approach for automated breast cancer detection improved the predictive performance of several prognosis markers significantly (each p<0.05) and a comparison with manually assessed data using conventional brightfield immunohistochemistry showed a high concordance for a multitude of different prognosis marker such as PR, ER, GATA3, HER2, and PD-L1 (each p<0.0001).
Conclusions
The combined assessment of up to 5 markers in a prognosis score showed strong prognostic relevance (p<0.001) and was an independent risk factor in multivariate analysis (p=0.005). Thus, the data from this study show that automated breast cancer detection in combination with artificial intelligence-based analysis of multiplex fluorescence immunohistochemistry enables a rapid and reliable analysis of multiple prognostic parameters. The major advantage of this method is the analysis of malignant cells exclusively that cannot be achieved using RNA-based panel analysis.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
G. Sauter: Other, Personal, Other, The GATA3 (MSVA-450M), PD-L1 (MSVA-711R), PR (MSVA-570R), AR (MSVA-367R), ER (MSVA-564R), TROP2 (MSVA-733R), TOP2A (MSVA-802R), Myosin (MSVA-375R), panCK (MSVA-000R), Ki-67 (MSVA-267M) antibodies were provided by MS Validated Antibodies GmbH (owned by a family member of GS): MSVA. All other authors have declared no conflicts of interest.
Resources from the same session
1807P - Talazoparib (TALA) plus enzalutamide (ENZA) in metastatic castration-resistant prostate cancer (mCRPC): Subgroup analyses of the all-comers cohort from TALAPRO-2 by homologous recombination repair (HRR) status
Presenter: Nobuaki Matsubara
Session: Poster session 14
1808P - Pain response and health-related quality of life (HRQL) analysis in patients with metastatic castration-resistant prostate cancer (mCRPC) receiving cabazitaxel every 2 weeks (16 mg/m<sup>2</sup>) versus every 3 weeks (25 mg/m<sup>2</sup>) in the CABASTY phase III trial
Presenter: Stephane Oudard
Session: Poster session 14
1809P - Dynamics of plasma tumour DNA and copy number alterations in advanced metastatic castration-resistant prostate cancer (mCRPC) patients treated with cabazitaxel: A prospective biomarker trial
Presenter: Nicole Brighi
Session: Poster session 14
1810P - Association of health-related quality of life with efficacy outcomes in the VISION study of patients with metastatic castration-resistant prostate cancer
Presenter: Michael Morris
Session: Poster session 14
1811P - Patient-reported outcomes (PROs) in men with metastatic castration-resistant prostate cancer (mCRPC) and homologous recombination repair (HRR) mutations receiving talazoparib (TALA) + enzalutamide (ENZA) vs placebo (PBO) + ENZA: Results from a phase III (TALAPRO-2) study
Presenter: Andre Fay
Session: Poster session 14
1813P - Phase I/II trial of oral EPI-7386 in combination with enzalutamide (enz) compared to enz alone in metastatic castration-resistant prostate cancer (mCRPC) subjects: Current phase I (PI) results
Presenter: Andrew Laccetti
Session: Poster session 14
1814P - First real-life data on [177Lu]Lu-PSMA-617: Descriptive analysis on the largest metastatic castration-resistant prostate cancer (mCRPC) cohort treated in early access in France
Presenter: Anne-Laure Giraudet
Session: Poster session 14
1815P - Emergent circulating tumor DNA (ctDNA) variants and ctDNA burden dynamics with potential associations with talazoparib antitumor activity in TALAPRO-1
Presenter: Elena Castro
Session: Poster session 14