Abstract 2313P
Background
APOBEC enzymes play key roles in DNA editing and are highly expressed in various cancer types, including estrogen receptor (ER)+/HER2- breast cancer (BC). APOBEC enzyme activation promotes mutagenesis that results in the generation of neoantigens, potentially leading to an anti-tumor immune response. APOBEC mutagenesis has been associated to resistance to chemotherapy and immunotherapy. The impact of APOBEC mutagenesis on the tumor microenvironment (TME) still remains unclear. Here we sought to characterize the TME of ER+/HER2- BC displaying APOBEC mutagenesis and to validate the findings in other APOBEC-related cancer types.
Methods
ER+/HER2- BCs from TCGA with available whole exome and RNA-sequencing data were included (n=519). We inferred single base substitutions (SBS) mutational signatures using SigProfiler. Cell type fractions were computed using CIBERSORT. The correlation between APOBEC signatures (SBS signatures 2 and 13) and the abundance of TME cell types was defined using a logistic regression model adjusted by tumor mutation burden. False discovery rate correction was applied (q-value). Other APOBEC-related cancers (bladder, head and neck, cervix and uterine) were assessed.
Results
Of 519 ER+/HER2- BCs, 57 (11%) were classified as APOBEC-dominant, 84 (16%) as non-dominant-APOBEC and the remaining 378 (73%) as non-APOBEC. Compared to non-APOBEC, APOBEC-dominant ER+/HER2- BCs displayed an enrichment for macrophages M1 infiltration (q=0.026), and decreased macrophage M2 population (q=0.017). Non-dominant APOBEC BCs displayed an extent of macrophage M1 and M2 infiltration intermediate between the other two groups. Analysis of the TME composition according to APOBEC mutagenesis in bladder (n=389), head and neck (n=463), cervical (n=269) and uterine (n=474) cancers revealed differences comparable to those observed in ER+/HER2- BCs.
Conclusions
An association between APOBEC mutagenesis and macrophages M1 infiltration was observed, suggesting that APOBEC processes may uniquely shape the TME in cancer. Going forward, we will investigate the impact of other mutagenesis processes, such as homologous recombination deficiency (HRD), on the TME, to gain a comprehensive understanding of the interplay between various mutational processes and the TME.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Breast cancer research foundation and National Institutes of Health/National Cancer Institute.
Disclosure
B. Weigelt: Financial Interests, Institutional, Research Funding: Repare Therapeutics. J.S. Reis-Filho: Financial Interests, Personal, Other, Consultant: Goldman Sachs, Eli Lilly, Saga Diagnostics; Financial Interests, Personal, Other, Member of the Scientific Advisory Board and Consultant: Repare Therapeutics, Paige.AI; Financial Interests, Personal, Advisory Board: Personalis, Roche Tissue Diagnostics; Financial Interests, Personal, Advisory Board, Member of the Scientific Advisory Board: Bain Capital; Financial Interests, Personal, Advisory Board, Ad hoc member of the Pathology Scientific Advisory Board: Daiichi Sankyo, Merck; Financial Interests, Personal, Advisory Board, Ad hoc member of the Oncology Scientific Advisory Board: AstraZeneca; Financial Interests, Personal, Advisory Board, Member of the SAB: MultiplexDX; Financial Interests, Personal, Member of Board of Directors: Odyssey Bio, Grupo Oncoclinicas; Financial Interests, Personal, Stocks/Shares: Repare Therapeutics; Financial Interests, Personal, Other, Stock options: Paige.AI. S. Chandarlapaty: Financial Interests, Personal, Other, Consultant: Novartis, Boxer Capital, Nuvalent, Inivata, Neogenomics; Financial Interests, Institutional, Research Grant: Daiichi Sankyo; Financial Interests, Personal and Institutional, Research Grant, Consultant: AstraZeneca; Financial Interests, Personal, Officer, Officer and Shares: Odyssey Biosciences; Financial Interests, Personal, Stocks/Shares: Totus Medicines. All other authors have declared no conflicts of interest.
Resources from the same session
2315P - Clinical and blood immune-inflammatory profiling to decode different patterns of acquired resistance in immunotherapy treated NSCLC patients
Presenter: Giulia Mazzaschi
Session: Poster session 08
2316P - Integrating comprehensive cancer genome profiling into clinical practice in an Italian referral center: Results of the first year of the fpg500 programme
Presenter: Camilla Nero
Session: Poster session 08
2317P - Mutational landscape and therapeutic implications in squamous cell carcinomas
Presenter: Laila Belcaid
Session: Poster session 08
2318P - Value of broad molecular profiling for cancer diagnosis
Presenter: Lars Volker Anton Werstein
Session: Poster session 08
2319P - CADSP: A web tool for comprehensive drug sensitivity analysis in pan-cancer
Presenter: Kexin Li
Session: Poster session 08
2320P - Detection of gene fusion-induced neoepitopes in dedifferentiated liposarcoma
Presenter: Peter Horak
Session: Poster session 08
2321TiP - TEMPLE: Thiopurine enhanced mutations for PD-1/ligand-1 efficacy: A phase Ib/II clinical trial
Presenter: Christine Federspiel Secher
Session: Poster session 08
2322TiP - SOUND: A phase II trial evaluating the efficacy of molecular profiling of circulating ± tumor tissue DNA for salvage-therapy matching in patients with advanced and refractory carcinoma
Presenter: Jakob Riedl
Session: Poster session 08