Abstract 2129
Background
We present a pharmacodynamic model that describes the tumor volume evolution during and after treatment with radiation and in combination with a radiosensitizing agent. A key contribution is the inclusion of a long-term radiation effect, which allows the model to describe distinct tumor behaviors including tumor eradication and tumor regrowth with different growth rates. Additionally, we introduce the concept of TSE (Tumor Static Exposure), the exposures of one or multiple compounds that result in tumor stasis and provide an example of its utility for optimizing drug combinations in oncology.
Methods
The model was challenged with data from four treatment groups (Vehicle, radiation, radiation + radiosensitizer 25 or 100 mg/kg) in xenograft study using a clinically-relevant administration schedule (6 weeks treatment, 5 days on/2 days off) and a mixed-effects approach was used for model-fitting. The model incorporated a permanent inhibition of the natural growth rate. This step was required to capture the complete tumor eradication and the observed tumor regrowth with different rates with animals having slower regrowth compared to control animals. The presence of a radiosensitizer will lead to the same tumor evolution as if a higher dose of radiation had been administered. The model was applied to predict exposure combinations that result in tumor eradication using the TSE.
Results
The developed model captured experimental data from all treatment groups adequately, with the parameter estimates taking biologically reasonable values. Model simulation showed that tumor eradication is observed at total radiation dose of 110 Gy, which is reduced to 80 or 30 Gy with co-administration of 25 or 100 mg/kg of a radiosensitizer.
Conclusions
The new model can describe different tumor dynamics including tumor eradication and tumor regrowth with different rates. The proposed model can be expanded for radiation in combination with chemical interventions or immunotherapy. The model and TSE can be applied to generate treatment predictions for different dosing schedules or determining drug synergies. The translational utility of the TSE concept is currently under investigation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Merck Healthcare KGaA.
Funding
Tim Cardilin was supported by an education Grant from Merck Healthcare KGaA, Darmstadt, Germany. This work was also partially funded by the Swedish Foundation for Strategic Research (Grant no. AM13-0046).
Disclosure
S. El Bawab: Full / Part-time employment: Merck Healthcare KGaA. A. Zimmermann: Full / Part-time employment: Merck Healthcare KGaA. F. Lignet: Full / Part-time employment: Merck Healthcare KGaA. All authors have declared no conflicts of interest.
Resources from the same session
2963 - Analytical performance of the Resolution-HRD plasma assay used to identify mCRPC patients with biallelic disruption of DNA repair genes for treatment with niraparib
Presenter: Ira Pekker
Session: Poster Display session 3
Resources:
Abstract
3523 - Results of a global external quality assessment scheme for EGFR testing on liquid biopsy
Presenter: Nicola Normanno
Session: Poster Display session 3
Resources:
Abstract
3295 - Clinical impact of plasma Next-Generation Sequencing (NGS) in advanced Non-small cell lung cancer (aNSCLC)
Presenter: Laura Bonanno
Session: Poster Display session 3
Resources:
Abstract
5632 - Feasibility study of a ctEGFR prototype assay on the fully automated Idylla™ platform
Presenter: Martin Reijans
Session: Poster Display session 3
Resources:
Abstract
3614 - Enhanced Access to EGFR Molecular Testing in NSCLC using a Cell-Free DNA Tube for Liquid Biopsy
Presenter: Theresa May
Session: Poster Display session 3
Resources:
Abstract
5664 - Analysis of circulating tumor DNA in paired plasma and sputum samples of EGFR-mutated NSCLC patients
Presenter: Christina Grech
Session: Poster Display session 3
Resources:
Abstract
4945 - Liquid biopsy and Array Comparative Genomic Hybridization (aCGH)
Presenter: Panagiotis Apostolou
Session: Poster Display session 3
Resources:
Abstract
5746 - Next-generation sequencing panel verification to detect low frequency single nucleotide and copy number variants from mixing cell line studies
Presenter: Rocio Rosas-Alonso
Session: Poster Display session 3
Resources:
Abstract
5901 - Automated rarefaction analysis for precision B and T cell receptor repertoire profiling from peripheral blood and FFPE-preserved tumor
Presenter: Luca Quagliata
Session: Poster Display session 3
Resources:
Abstract
2027 - A Heptamethine cyanine dye is a potential diagnostic marker for Myeloid-Derived Suppressor Cells
Presenter: Chaeyong Jung
Session: Poster Display session 3
Resources:
Abstract