Abstract 2285
Background
Bromodomain-containing proteins are important epigenetic regulators that specifically recognize acetylated histones and implicated in regulating gene expression. Bromodomain inhibitors showed a prominent therapeutic effect on metabolic diseases and various types of cancers in clinical trials. In this study, we employed RNA-Seq to interrogate the expression profile of bromodomain-containing proteins in human hepatocellular carcinoma (HCC). We found that Bromodomain and PHD Finger Containing 1 (BRPF1) was among the most significantly overexpressed bromodomain-containing proteins in HCC.
Methods
The expression profile of bromodomain-containing proteins in our HCC patients was analyzed by RNA-Seq. BRPF1 knockout in MHCC97L was accomplished by using lentiviral-based CRISPR gene editing system. Cell proliferation, colony formation, and cell migration assays were performed to assess in vitro function of BRPF1. A nude mice orthotopic liver xenograft model was used to study the role of BRPF1 in HCC tumorigenicity and lung metastasis in vivo. Sphere formation assay and qPCR were performed to study the stemness properties of BRPF1 knockdown cells. Apoptosis and cell cycle arrest assay was performed by flow cytometry. Senescence was detected by B-galactosidase staining, mRNA and protein expression of senescence-associated makers.
Results
Clinically, high BRPF1 expression was associated with poorer survival rates in HCC patients. The upregulation of BRPF1 mRNA in HCC was significantly associated with gene copy gain and gene amplification. ROC analysis indicated that BRPF1 was a potential biomarker for HCC detection. shRNA-mediated knockdown and CRISPR-mediated knockout of BRPF1 suppressed cell proliferation and colony formation in MHCC97L. Knockout of BRPF1 also reduced tumorigenicity in liver orthotopic injection model in nude mice. We found that BRPF1 expression was elevated in CD133+ liver cancer stem cells. Inactivation of BRPF1 also reduced the expression of genes related to cancer stemness and cancer renewal ability in sphere formation. BRPF1 inhibition induced apoptosis, cell cycle arrest as well as cellular senescence.
Conclusions
Our findings suggest that BRPF1 may contribute to HCC development and cancer stemness.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
592 - Effects of novel targeted anticancer drugs on cytotoxicity, apoptosis, angiogenesis, EMT, drug resistance and autophagic mechanism
Presenter: Seyma Aydinlik
Session: Poster Display session 1
Resources:
Abstract
3235 - Delineating the mechanisms of alpha 1-3 fucosyltransferase FUT11 in ovarian cancer
Presenter: Qi Chen
Session: Poster Display session 1
Resources:
Abstract
3577 - The tyrosine kinase inhibitor Dasatinib blocks tumor growth, invasion and recurrence potential by interrupting the communication between cancer cells and their surrounding microenvironment in triple negative breast cancer
Presenter: Miriam Nuncia-Cantarero
Session: Poster Display session 1
Resources:
Abstract
4808 - NORE1A induces a feedback termination of TNF signaling by antagonizing TNFR1 through ITCH-mediated destruction complex
Presenter: Jieun Ahn
Session: Poster Display session 1
Resources:
Abstract
1294 - Hsp90 inhibitors enhance the antitumoral effect of osimertinib and overcome osimertinib resistance in non-small-cell cell lung cancer cell models
Presenter: Jordi Codony-Servat
Session: Poster Display session 1
Resources:
Abstract
1559 - Expression of IL-17RA promotes cancer stem-like properties of colorectal cancer cells by Stat3 activation
Presenter: Chih-Yung Yang
Session: Poster Display session 1
Resources:
Abstract
1615 - Adaption of Pancreatic Cancer Cells to AKT1 Inhibition Induces the Acquisition of Cancer Stem-Cell Like Phenotype Through Upregulation of Mitochondrial Functions
Presenter: Hugo Arasanz
Session: Poster Display session 1
Resources:
Abstract
4793 - Bub3 is phosphorylated by the Ataxia-Telangiectasia Mutated Kinase in mitosis and required for activation of the mitotic spindle checkpoint in Breast Cancer
Presenter: Mingming Xiao
Session: Poster Display session 1
Resources:
Abstract
1448 - The regulation of INK4 locus by long non-coding RNAs
Presenter: Yojiro Kotake
Session: Poster Display session 1
Resources:
Abstract
1858 - Vascular Endothelial Growth Factor in Colorectal Cancer Pathology, Survival and Treatment
Presenter: Liz Baker
Session: Poster Display session 1
Resources:
Abstract