Abstract 5827
Background
Immunotherapies are considered the most promising therapeutic approach for cancer and the immunosuppressive activity of ARG1 has been recognized as an important mechanism of the tumor immune evasion. This prompted the development of arginase inhibitors, which in preclinical models, enhanced antitumor immunity as a monotherapy and in combination with other immune checkpoint inhibitors. On the other hand, ARG2, but not ARG1, is highly expressed in neoplastic cells in many tumors and its expression is correlated with malignant phenotype. Preclinical studies confirmed that ARG2 promotes the proliferation of cancer cells and the growth of tumor xenografts independently of its immunosuppressive activity. Generation of polyamines to facilitate the growth of hypoxic and nutrient-deprived tumors, as well as specific metabolic adaptations including increased reliance on protein catabolism are the major mechanisms underlying the tumorigenic activity of ARG2. Hence, the tumor cell intrinsic activity of ARG2 represents an attractive intracellular target for novel therapies with arginase inhibitors.
Methods
The compound activity was determined using human ARG1 and ARG2, and in CHO-K cells expressing ARG1 and ARG2. ARG1 and ARG2 expression in cancer cell lines and dissected tumors was assessed by WB and qPCR. CellTiter-Glo was used to assess the antiproliferative activity of the compound. In vivo antitumor activity was evaluated in murine CT26 (syngeneic) and human K562 (xenograft) subcutaneous mouse models.
Results
The expression of the endogenous ARG2 was confirmed in multiple human cancer cell lines and xenografts. We developed a highly potent dual ARG1 and ARG2 inhibitor, OATD-02, with a good cellular activity. We demonstrated that OATD-02 inhibited proliferation of multiple human cancer cell lines expressing ARG2 and suppressed the growth of human xenografts. OATD-02 also strongly inhibited the growth of the syngeneic CT26 tumors.
Conclusions
OATD-02, a potent ARG1 and ARG2 inhibitor, exerts its antitumor efficacy not only by the reactivation of the immune response but also by directly suppressing the ARG2-dependent proliferation of cancerous cells. Thus, OATD-02 is a very promising compound for the treatment of hypoxic tumors which are particularly resistant to therapies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
OncoArendi Therapeutics SA.
Funding
National Centre for Research and Development in Poland.
Disclosure
M.M. Grzybowski: Full / Part-time employment: OncoArendi Therapeutics SA. J. Pęczkowicz-Szyszka: Full / Part-time employment: OncoArendi Therapeutics SA. P. Wolska: Full / Part-time employment: OncoArendi Therapeutics SA. P.S. Stańczak: Full / Part-time employment: OncoArendi Therapeutics SA. M. Welzer: Full / Part-time employment: OncoArendi Therapeutics SA. E. Nikolaev: Full / Part-time employment: OncoArendi Therapeutics SA. A.M. Siwińska: Full / Part-time employment: OncoArendi Therapeutics SA. R. Błaszczyk: Full / Part-time employment: OncoArendi Therapeutics SA. B. Borek: Full / Part-time employment: OncoArendi Therapeutics SA. M. Dzięgielewski: Full / Part-time employment: OncoArendi Therapeutics SA. A. Gzik: Full / Part-time employment: OncoArendi Therapeutics SA. J. Nowicka: Full / Part-time employment: OncoArendi Therapeutics SA. J. Brzezińska: Full / Part-time employment: OncoArendi Therapeutics SA. K. Jędrzejczak: Full / Part-time employment: OncoArendi Therapeutics SA. J. Chrzanowski: Full / Part-time employment: OncoArendi Therapeutics SA. A. Gołębiowski: Leadership role, Full / Part-time employment: OncoArendi Therapeutics SA. J. Olczak: Leadership role, Full / Part-time employment: OncoArendi Therapeutics SA. P. Dobrzański: Leadership role, Full / Part-time employment: OncoArendi Therapeutics SA. All other authors have declared no conflicts of interest.
Resources from the same session
5655 - Bioactivation of napabucasin triggers reactive oxygen species–mediated cancer cell death
Presenter: Fieke Froeling
Session: Poster Display session 3
Resources:
Abstract
4097 - Targeting NRG1-fusions in multiple tumour types: Afatinib as a novel potential treatment option
Presenter: Stephen V Liu
Session: Poster Display session 3
Resources:
Abstract
1129 - Aspirin and Ticagrelor for the prevention of tumour cell induced platelet aggregation
Presenter: Meera Chauhan
Session: Poster Display session 3
Resources:
Abstract
4514 - Pharmacokinetic/ pharmacodynamic (PK/PD) exposure-response characterization of GSK3359609 (GSK609) from INDUCE-1, a phase I open-label study
Presenter: Michele Maio
Session: Poster Display session 3
Resources:
Abstract
5169 - In vitro functional interrogation of viable Circulating Tumor Associated Cells (C-TACs) for evaluating Platin resistance.
Presenter: Stefan Schuster
Session: Poster Display session 3
Resources:
Abstract
3129 - MPS1 and PLK1 as new therapy targets in TP53 mutated solid tumors
Presenter: Balazs Gyorffy
Session: Poster Display session 3
Resources:
Abstract
2129 - The Tumor Static Exposure (TSE) concept & utility: application to combination treatment of radiation and radiosensitizing agent in tumor xenograft experiments
Presenter: Samer El Bawab
Session: Poster Display session 3
Resources:
Abstract
1814 - General Methodology to Optimize Tumor Treating Fields Delivery Utilizing Numerical Simulations
Presenter: Noa Urman
Session: Poster Display session 3
Resources:
Abstract
3010 - The Australian Exceptional Responders Program: a National collaboration
Presenter: Megan Barnet
Session: Poster Display session 3
Resources:
Abstract
4489 - A Window of Opportunity Trial of Atorvastatin Targeting p53 Mutant Malignancies
Presenter: Joaquina Baranda
Session: Poster Display session 3
Resources:
Abstract