Abstract 2751
Background
Gastrointestinal stromal tumors (GISTs) are rare mesenchymal tumors of the gastrointestinal (GI) tract. The size, the presence of a c-KIT gene mutation and the mitotic index are used to determine the prognosis and to direct systemic treatment choices. This study evaluated the use of radiomics, a technique which uses algorithms for diagnosing and predicting the c-KIT mutational status and mitotic index of GISTs from medical imaging features.
Methods
A combination of machine learning methods was used to distinguish treatment-naive GISTs from other GI tumors resembling GISTs on imaging, based on clinical and molecular characteristics, as well as imaging features extracted from the contrast-enhanced venous phase computed tomography scans. Evaluation was performed in a 100x random-split cross-validation with 20% of the data for testing.
Results
A total of 242 tumors were used for distinguishing GISTs (n = 123) from non-GISTs (n = 119) including leiomyoma (n = 25), schwannoma (n = 21), gastric carcinoma (n = 25), lymphoma (n = 23) and leiomyosarcoma (n = 25).The non-GISTs were located either gastric (23%) or non-gastric (77%) and the GISTs were located either gastric (63%) or non-gastric (37%). A c-KIT mutation was present in the majority of the GISTs (exon 9 n = 10, exon 11 n = 56, exon 13 n = 2). The dataset originated from 65 different scanners, leading to heterogeneity in the imaging protocols. Imaging feature analyses showed a mean area under the curve (mAUC) of 0.70 (95% confidence interval [CI] 0.63-0.76) for distinguishing GIST from non-GISTs. A mAUC of 0.52 (95% CI 0.32-0.72) was found for predicting all c-KIT mutations, a mAUC of 0.51 (95% CI 0.29-0.72) for predicting a c-KIT exon 9 mutation, and a mAUC of 0.61 (95% CI 0.47-0.74) for predicting a c-KIT exon 11 mutation. The mitotic index was available in 83 patients (≤5/50 high power fields (HPFs) n = 53, 43.1%, >5/50 HPFs n = 33, 26.8%), and showed a mAUC of 0.60 (95% CI 0.47-0.73).
Conclusions
This pilot study showed the potential of radiomics to distinguish GIST from other GI tumors, but no potential in predicting c-KIT mutational status and mitotic index of GISTs. Further optimization and validation of the radiomics model is required to incorporate radiomics in the diagnostic routine of GISTs.
Clinical trial identification
Editorial acknowledgement
M.J. Timbergen and M.P.A. Starmans contributed equally to this study.
Legal entity responsible for the study
The authors.
Funding
The Netherlands Organization for Scientific Research.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
3371 - Pulmonary Resectable Metastases of Osteosarcoma With Apatinib and CHemotherapy (PROACH):A Multi-Center Phase II Randomized Clinical Trial
Presenter: Qiyuan Bao
Session: Poster Display session 1
Resources:
Abstract
1666 - National Clinical-biological Prospective Cohort of Incident Cases of Aggressive Fibromatosis, AF (ALTITUDES)
Presenter: Thomas Ryckewaert
Session: Poster Display session 1
Resources:
Abstract
5531 - Health-related quality Of Life In patients with advanced Soft TIssue sarcomas treated with Chemotherapy: The HOLISTIC study
Presenter: Eugenie Younger
Session: Poster Display session 1
Resources:
Abstract
5568 - Assessing QUality of life and Experiences of diagnostic Trajectories of Sarcoma patients: The QUEST study protocol
Presenter: Vicky Soomers
Session: Poster Display session 1
Resources:
Abstract