Abstract 2534
Background
Radiomic signatures offer the potential to enhance clinical decision-making as on-treatment markers of efficacy to assess which patients (pts) should continue treatment. Using treatment-related radiomic signatures via quantitative, artificial intelligence (AI)-based analysis of computed tomography (CT) images, we evaluated early tumor changes in pts with sqNSCLC treated in 2 treatment groups: nivolumab (group A) or docetaxel (group B).
Methods
Data from pts with sqNSCLC were collected prospectively and analyzed retrospectively across 2 multicenter clinical trials (A, n = 92 CheckMate 017 [NCT01642004], CheckMate 063 [NCT01721759]; B, n = 50 CheckMate 017). For the current study, pts with a measurable lung lesion and baseline and on-treatment assessments (8 weeks) were randomized to training (T) or validation (V) datasets (A: 72T, 20V; B: 32T, 18V;). For each pt, the largest measurable lung tumor was segmented to extract 1,749 radiomic features. Pts were classified as treatment-sensitive or -resistant using median progression-free survival (PFS) calculated from pts included in this study (A, B). Using AI-based methodologies, up to 4 features were selected and combined to develop a signature score (range, 0-1) in the T datasets and applied to each pt in the V datasets to classify sensitivity to treatment.
Results
The radiomics features associated with treatment sensitivity in the T datasets were a decrease in tumor volume (A, B), infiltration of tumor boundaries (A), or tumor spatial heterogeneity (A). The radiomic signatures predicted treatment sensitivity in the V dataset of each study group (AUC [95% CI]: A, 0.77 [0.55-1.00]; B, 0.67 [0.37-0.96]).
Conclusions
AI-based CT imaging detected early changes in radiomic features from baseline to first on-treatment tumor assessment—decrease in tumor volume, tumor heterogeneity, and tumor infiltrativeness along boundaries—that were associated with sensitivity to treatment in pts with sqNSCLC, offering an approach that could guide clinical decision-making to continue or modify systemic therapies.
Clinical trial identification
CheckMate 017 [NCT01642004] July 17, 2012 (first posted date) CheckMate 063 [NCT01721759] November 6, 2012 (first posted date).
Editorial acknowledgement
Legal entity responsible for the study
Bristol-Myers Squibb and Columbia University Medical Center.
Funding
Bristol-Myers Squibb.
Disclosure
M. Fronheiser: Shareholder / Stockholder / Stock options, Full / Part-time employment: Bristol-Myers Squibb. S. Du: Shareholder / Stockholder / Stock options, Full / Part-time employment: Bristol-Myers Squibb. W. Hayes: Shareholder / Stockholder / Stock options, Full / Part-time employment: Bristol-Myers Squibb. D.K. Leung: Shareholder / Stockholder / Stock options, Full / Part-time employment: Bristol-Myers Squibb. A. Roy: Shareholder / Stockholder / Stock options, Full / Part-time employment: Bristol-Myers Squibb. L.H. Schwartz: Research grant / Funding (self), Member DSMB: Merck; Research grant / Funding (self), Member DSMB: Novartis; Research grant / Funding (self), Consultant endpoint analysis: Boehringer Ingelheim. All other authors have declared no conflicts of interest.
Resources from the same session
5105 - Fresh blood Immune cell monitoring in patients treated with nivolumab in the GETUG-AFU26 NIVOREN study: association with toxicity and treatment outcome
Presenter: Aude DESNOYER
Session: Poster Display session 3
Resources:
Abstract
1877 - Advanced clear-cell renal cell carcinoma (accRCC): association of microRNAs (miRNAs) with molecular subtypes, mRNA targets and outcome.
Presenter: Annelies Verbiest
Session: Poster Display session 3
Resources:
Abstract
5543 - Prior tyrosine kinase inhibitors (TKI) and antibiotics (ATB) use are associated with distinct gut microbiota ‘guilds’ in renal cell carcinoma (RCC) patients
Presenter: Valerio Iebba
Session: Poster Display session 3
Resources:
Abstract
2689 - mTOR mutations are not associated with shorter PFS and OS in patients treated with mTOR inhibitors
Presenter: Cristina Suarez Rodriguez
Session: Poster Display session 3
Resources:
Abstract
3069 - Efficacy of immune checkpoint inhibitors (ICI) and genomic alterations by body mass index (BMI) in Advanced Renal Cell Carcinoma (RCC)
Presenter: Aly-Khan Lalani
Session: Poster Display session 3
Resources:
Abstract
5089 - Finding the Right Biomarker for Renal Cell Carcinoma (RCC): Nivolumab treatment induces the expression of specific peripheral lymphocyte microRNAs in patients with durable and complete response.
Presenter: Lorena Incorvaia
Session: Poster Display session 3
Resources:
Abstract
2594 - Algorithms derived from quantitative pathology can be a gatekeeper in patient selection for clinical trials in localised clear cell renal cell carcinoma (ccRCC)
Presenter: In Hwa Um
Session: Poster Display session 3
Resources:
Abstract
2566 - High baseline blood volume is an independent favorable prognostic factor for overall and progression-free survival in patients with metastatic renal cell carcinoma
Presenter: Aska Drljevic-nielsen
Session: Poster Display session 3
Resources:
Abstract
2675 - Impact of estimand selection on adjuvant treatment outcomes in renal cell carcinoma (RCC)
Presenter: Daniel George
Session: Poster Display session 3
Resources:
Abstract
1541 - TERT gene fusions characterize a subset of metastatic Leydig cell tumors
Presenter: Bozo Kruslin
Session: Poster Display session 3
Resources:
Abstract