Abstract 3722
Background
Histone acetylation plays an important role in regulating the chromatin structure and is tightly regulated by histone acetyltransferases (HAT) and histone deacetylases (HDAC). Recent studies have demonstrated that several chromatin-regulating proteins can modulate cellular responses to other cytotoxic modalities including ionizing radiation and chemotherapeutic drugs. Even though histone acetylation is one of the key mechanisms of epigenetic regulation, relatively little is known about the cancer therapeutic potential of HAT inhibitors. This is in stark contrast to the well-studied effects of HDAC inhibitors. In this study, we investigated the proton beam-sensitizing effect of C646, a selective small molecule inhibitor of p300 histone acetyltransferase in human pancreatic cancer cells.
Methods
Cell viability assay (CCK-8; Dojindo), Clonogenic survival assay, Cell cycle analysis (PI staining). Annexin V-FITC and PI staining, γ-H2AX foci, Western blot, BxPC-3 Xenograft tumor model, TUNEL assay.
Results
AsPC-1, BxPC-3 and Mia-paca2 cells exhibited increase in radiosensitivity when exposed to C646 at all doses of proton beam tested. C646 pre-treatment induce led to increase of sub-G1 population and abolishment of G2/M arrest. Flow cytometry analysis with annexin V staining and Western blot analysis showed that The pre-treatment with C646 significantly enhanced proton-induced apoptotic cell death through the down-regulation of anti-apoptotic molecules. Our in vivo results demonstrate synergistic effects of combination therapy with C646 and proton beam. In BxPC-3 xenograft tumor model, C646 pre-treatment increased proton-induced tumor growth inhibition and apoptotic cell death in tumor tissues. In addition, the combination treatment of C646 with proton beam increased DNA damage and decreased activation of DNA repair pathway compared with proton alone.
Conclusions
Our results suggest that the C646 may increase proton- induced apoptosis through the modulation of various pro- and anti- apoptotic molecules in human pancreatic cancer cells. These results provide proof of principle that the inhibition of histone acetylation by HATis can be exploited to develop new proton-sensitizer.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
National Research Foundation of Korea (NRF).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
2273 - High performance of serial tumor biopsies in first in human (FIH) phase I trials.
Presenter: Jun Sato
Session: Poster Display session 1
Resources:
Abstract
5933 - Response rates and lesion-level progression patterns of solid tumor patients in an academic phase 1 program: implications for tumor heterogeneity
Presenter: Christopher Chen
Session: Poster Display session 1
Resources:
Abstract
3569 - Clinical Benefit and Response Rate in Early Phase Clinical Trials: First Report from a Single-Institution Study
Presenter: Antonio Marra
Session: Poster Display session 1
Resources:
Abstract
4139 - Patient (pt) selection for immunotherapeutic early-phase clinical trials (ieCTs): a single Phase I Unit experience
Presenter: Matteo Simonelli
Session: Poster Display session 1
Resources:
Abstract
4451 - Improving patient selection for immuno-oncology phase 1 trials: an external validation of five prognostic scores at Claudius Regaud Institute of Toulouse, Oncopôle (IUCT-O).
Presenter: Ghassan Al Darazi
Session: Poster Display session 1
Resources:
Abstract
1696 - Demonstrating the Changing Trends in Phase 1 Clinical Trials
Presenter: Christina Guo
Session: Poster Display session 1
Resources:
Abstract
3202 - Participation of Women in phase 1 oncology clinical trials
Presenter: Laura Vidal
Session: Poster Display session 1
Resources:
Abstract
4518 - Predictors for early trial discontinuation of patients with cancer participating in phase I clinical trials
Presenter: Joeri Douma
Session: Poster Display session 1
Resources:
Abstract
4368 - Safety of Tumor Treating Fields delivery to the torso: Meta analysis from TTFields clinical trials
Presenter: Federica Grosso
Session: Poster Display session 1
Resources:
Abstract
4615 - Proteomic Profiling Identifies Molecular Basis of Adverse Event to BPM31510 Exposure: Rationale for Comprehensive Molecular Pharmacodynamics (PD) in Phase 1 Clinical Trial Design
Presenter: Vivek Subbiah
Session: Poster Display session 1
Resources:
Abstract