Abstract 5678
Background
Hepatocellular carcinoma (HCC) has relatively sensitive and specific serum tumor antigen markers (AFP), which is also the most common serological marker for cancer screening. However, there are unignorable limitations, including possible false-negatives/positives owing to confounding conditions. Reliable non-invasive diagnostics is still in urgent need. This work proposes a novel LDI-TOF-MS technique for HCC screening and diagnosis. By taking advantage of 3D nanostructures and machine learning, our technique enables high fidelity and reproducibility.
Methods
An LDI-TOF-MS platform was established for HCC screening and was applied to 139 patients with liver cancer, as well as 203 healthy controls (Table). All mass spectrum was collected within a mass range of 100 to 1,100 Da for metabolites. Based on the data acquired by LDI-TOF-MS, SVM algorithm was developed and applied for automated cancer classification across six cancer types, which was further validated by single blinded samples with randomly selected cancer patients and controls.Table: 1432P
Summary of patient and healthy control characteristics
Patient Type | N | Gender | Gender | Age | AJCC Stage | AJCC Stage | AJCC Stage | AJCC Stage |
---|---|---|---|---|---|---|---|---|
M(%) | F(%) | I | II | III | IV | |||
HCC | 139 | 120 (86.33%) | 19 (13.67%) | 55.63± 11.22(25-80) | 51 | 48 | 40 | - |
HC | 203 | 117 (57.64%) | 86 (42.36%) | 47.68± 10.78(23-76) | - | - | - | - |
Results
This assay demonstrated an average sensitivity of 96% and a specificity over 98% in detecting HCC. In our cohort, 47 of 137 HCC patients (35.77%) were AFP negative (AFP<20ng/ml, stage I n = 18, stage II n = 17 and stage III n = 12). Here, we showed that the LDI-TOF-MS recognized almost all AFP-negative HCC. The sensitivity and specificity were obviously superior to AFP in HCC: only 2 of 137 HCCs (1.46%) were misclassified as healthy controls. In contrast, AFP positive and AFP negative HCCs were not readily distinguished by this method. Therefore, this method was independent of tumor markers.
Conclusions
This work established a low-cost, high-throughput procedure based on trace amount of serum to identify HCC as well as healthy controls with superior precision, making it a promising technique for clinical cancer research and translation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Zhongshan Hospital, Fudan University.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
3186 - The landscape of immuno-oncology clinical trials in China
Presenter: Dawei Wu
Session: Poster Display session 3
Resources:
Abstract
3468 - Clinical Significance of Immune-related Creatine Phosphokinase Increase Associated with Anti PD1/PD-L1 immunotherapies.
Presenter: Samia Hajem
Session: Poster Display session 3
Resources:
Abstract
3836 - Thyroid toxicity and anti-thyroid antibodies as predictive markers for patients treated with anti-PD1 checkpoint therapy
Presenter: Wim Meer
Session: Poster Display session 3
Resources:
Abstract
1343 - Treatment-related adverse events and tolerability in patients with advanced renal cell carcinoma treated with first-line combination therapy with checkpoint inhibitors
Presenter: Thura Win Htut
Session: Poster Display session 3
Resources:
Abstract
5783 - Immune-related adverse events (irAEs) with single-agent PD-1 vs PD-L1 inhibitors: a meta-analysis of 8,730 patients from clinical trials
Presenter: Guru Sonpavde
Session: Poster Display session 3
Resources:
Abstract
5422 - EULAR recommendations for the diagnosis and the management of rheumatic immune-related adverse events due to cancer immunotherapy
Presenter: Marie Kostine
Session: Poster Display session 3
Resources:
Abstract
1202 - Radiographic characteristics and poor prognostic factors of interstitial lung disease (ILD) in nivolumab-treated patients with non-small cell lung cancer (NSCLC)
Presenter: Shinichi Sasaki
Session: Poster Display session 3
Resources:
Abstract
2749 - Use of Checkpoint Inhibitors (CPI) in Allogeneic Stem Cell Transplant Recipients: An Institutional Experience and A Systemic Review of the Literature
Presenter: Chantal Saberian
Session: Poster Display session 3
Resources:
Abstract
3256 - Deep Learning Radiomics distinguishes intrapulmonary Disease from Metastases in Immunotherapy-treated Melanoma Patients
Presenter: Thi Dan Linh Nguyen-Kim
Session: Poster Display session 3
Resources:
Abstract
5031 - Sarcoidosis-Like Reaction Mimics Progression in patients treated with immune checkpoint inhibitors
Presenter: Sophie Hans
Session: Poster Display session 3
Resources:
Abstract