Abstract 5678
Background
Hepatocellular carcinoma (HCC) has relatively sensitive and specific serum tumor antigen markers (AFP), which is also the most common serological marker for cancer screening. However, there are unignorable limitations, including possible false-negatives/positives owing to confounding conditions. Reliable non-invasive diagnostics is still in urgent need. This work proposes a novel LDI-TOF-MS technique for HCC screening and diagnosis. By taking advantage of 3D nanostructures and machine learning, our technique enables high fidelity and reproducibility.
Methods
An LDI-TOF-MS platform was established for HCC screening and was applied to 139 patients with liver cancer, as well as 203 healthy controls (Table). All mass spectrum was collected within a mass range of 100 to 1,100 Da for metabolites. Based on the data acquired by LDI-TOF-MS, SVM algorithm was developed and applied for automated cancer classification across six cancer types, which was further validated by single blinded samples with randomly selected cancer patients and controls.Table: 1432P
Summary of patient and healthy control characteristics
Patient Type | N | Gender | Gender | Age | AJCC Stage | AJCC Stage | AJCC Stage | AJCC Stage |
---|---|---|---|---|---|---|---|---|
M(%) | F(%) | I | II | III | IV | |||
HCC | 139 | 120 (86.33%) | 19 (13.67%) | 55.63± 11.22(25-80) | 51 | 48 | 40 | - |
HC | 203 | 117 (57.64%) | 86 (42.36%) | 47.68± 10.78(23-76) | - | - | - | - |
Results
This assay demonstrated an average sensitivity of 96% and a specificity over 98% in detecting HCC. In our cohort, 47 of 137 HCC patients (35.77%) were AFP negative (AFP<20ng/ml, stage I n = 18, stage II n = 17 and stage III n = 12). Here, we showed that the LDI-TOF-MS recognized almost all AFP-negative HCC. The sensitivity and specificity were obviously superior to AFP in HCC: only 2 of 137 HCCs (1.46%) were misclassified as healthy controls. In contrast, AFP positive and AFP negative HCCs were not readily distinguished by this method. Therefore, this method was independent of tumor markers.
Conclusions
This work established a low-cost, high-throughput procedure based on trace amount of serum to identify HCC as well as healthy controls with superior precision, making it a promising technique for clinical cancer research and translation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Zhongshan Hospital, Fudan University.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
5822 - Greek nursing students experience facing death in clinical practice
Presenter: Maria Dimoula
Session: Poster Display session 3
Resources:
Abstract
2866 - HOPEVOL: Hospice care appropriate to the wishes and needs of patients in the palliative terminal phase.
Presenter: Merel van Klinken
Session: Poster Display session 3
Resources:
Abstract
829 - Mindfulness-based stress reduction in early palliative care for advanced cancer patients : an italian single-centre study. MINDEEP
Presenter: Emilia Gianotti
Session: Poster Display session 3
Resources:
Abstract
2702 - Optimising Inpatient Oncology Care
Presenter: Lisa Judge
Session: Poster Display session 3
Resources:
Abstract
1527 - Analysis on the Implementation Results of Family Sickbed for Oncology Patients in Dongshi Township Health Centers from 2015 to 2017
Presenter: Yayu Huang
Session: Poster Display session 3
Resources:
Abstract
2054 - Exploring needs for palliative care and quality of life for oncology patients with advanced disease who undergo radiotherapy
Presenter: Foteini Antonopoulou
Session: Poster Display session 3
Resources:
Abstract
5605 - Cytotoxic contamination in cancer care settings – Risks and safety awareness among cancer nurses
Presenter: Sandra Lundman Vikberg
Session: Poster Display session 3
Resources:
Abstract
5769 - Understanding Chemotherapy - group education sessions prior to commencing chemotherapy
Presenter: Aileen McHale
Session: Poster Display session 3
Resources:
Abstract
2620 - Estimation of HPQ-based absenteeism and presenteeism in cancer patients via ResearchKit
Presenter: Shunsuke Kondo
Session: Poster Display session 3
Resources:
Abstract
4705 - Identifying falls-related variables and risk factors in hospitalised cancer patients
Presenter: Maria Montserrat Martí Dillet
Session: Poster Display session 3
Resources:
Abstract