Abstract 4631
Background
Determining which early stage breast cancer patients should receive chemotherapy is an important clinical and economic issue. Chemotherapy has many adverse side effects, impacting on quality of life, along with significant economic consequences. Biomarkers that can predict patient response to chemotherapy can help avoid ineffective overtreatment. The aim of this work is to assess if the OncoMasTR (OM) signature can predict pathological complete response (pCR) to neo-adjuvant chemotherapy, and to compare its predictive value with EndoPredict (EP) and Oncotype DX (RS).
Methods
Gene expression datasets derived from breast cancer patients that had pre-treatment biopsies, received neo-adjuvant chemotherapy and an assessment of pCR were obtained from GEO (GSE16716, GSE20271, GSE25066, GSE32646, GSE34138, GSE41998, GSE22226). Patients with ER-positive, HER2-negative disease and pCR data were selected. OM, EP and RS numeric risk scores were approximated by applying the gene coefficients to the corresponding mean probe expression values. Association with pCR was estimated using logistic regression.
Results
A total of 813 patients with 66 pCR events were included in the analysis. OM, EP and RS prognostic scores were moderately well correlated according to the Pearson’s correlation coefficient: OM vs EP (min=0.44; mean=0.67; max=0.81), OM vs RS (min=0.34; mean=0.62; max=0.79), and RS vs EP (min=0.55; mean=0.79; max=0.89). Significant predictors of pCR with p-values of 0.0001 for all three signatures. Odds ratios for a 1 standard deviation increase in risk score, adjusted for cohort, were similar in magnitude and not significantly different: OM 1.66 (1.29 to 2.16), EP 1.76 (1.37 to 2.27), RS 1.84 (1.44 to 2.35).
Conclusions
In this in silico analysis, OM, EP and RS prognostic scores were significantly predictive of pCR to neo-adjuvant chemotherapy in ER-positive, HER2-negative breast cancer. Optimal stratification for neo-adjuvant chemotherapy offers the opportunity for personalised care, improved therapy response rates, and reduced ineffective treatment and costs.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
University College Dublin.
Funding
The EI and from the European Union’s Horizon 2020 research and innovation programme under the Marie Slodowska-Curie grant agreement No. 713654.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
5737 - PAM50 and CGH-array genomic characterization of HER2-Equivocal Breast Cancers defined by the 2018 ASCO/CAP recommendations.
Presenter: Carine Ngo
Session: Poster Display session 2
Resources:
Abstract
1096 - OncotypeDX® predictive nomogram for recurrence score output: a machine learning system based on quantitative immunochemistry analysis - ADAPTED01
Presenter: Fabio Marazzi
Session: Poster Display session 2
Resources:
Abstract
5426 - Geriatric parameters predict both disease-related and patient-reported outcomes in older patients with breast cancer
Presenter: Willeke van der Plas-Krijgsman
Session: Poster Display session 2
Resources:
Abstract
5865 - Patients with a 21-gene assay in South East London differ from the TAILORx trial population
Presenter: Charalampos Gousis
Session: Poster Display session 2
Resources:
Abstract
1312 - Predictive tools in adjuvant breast cancer – what is the standard of evidence supporting their utility? A literature review examining validation of Adjuvant!, Cancermath and NHS Predict
Presenter: Alice Loft
Session: Poster Display session 2
Resources:
Abstract
2445 - Oncologic outcome of invasive lobular carcinoma: Is it different from that of invasive ductal carcinoma?
Presenter: Hee Jun Choi
Session: Poster Display session 2
Resources:
Abstract
2476 - Pathologic response and survival efficacy in patients with initial nodal involvement after neoadjuvant chemotherapy in early breast cancer
Presenter: SERAFIN MORALES Murillo
Session: Poster Display session 2
Resources:
Abstract
3761 - Chemotherapy-induced amenorrhea: prognostic impact on premenopausal Egyptian patients with breast cancer
Presenter: Khaled Abdel Karim
Session: Poster Display session 2
Resources:
Abstract
4687 - Predicting the presence of breast cancer using circulating small RNA in the serum
Presenter: Yumiko Koi
Session: Poster Display session 2
Resources:
Abstract
5612 - Evaluation of germ line mutational status among women with triple-negative breast cancer in Russia
Presenter: Elena Shagimardanova
Session: Poster Display session 2
Resources:
Abstract