Abstract 3290
Background
Meningioma growth rates are highly variable, even within benign subgroups, causing some cases to remain stable while others grow rapidly despite radiotherapy. Biomarkers that differentiate meningiomas by aggression and enable prediction of their biological behavior would therefore be clinically beneficial.
Methods
Microarrays were used to identify microRNA (miRNA) expression in primary recurrent, non-recurrent and secondary meningiomas of all grades. miRNAs found to be deregulated in the microarray experiments were validated by quantitative real-time PCR using samples from a cohort of 191 patients (median age 56). Statistical analysis of the resulting dataset revealed miRNA predictors of meningioma recurrence.
Results
miRNAs exhibiting differential expression (independently of histological grade) in primary recurrent, non-recurrent and secondary meningiomas were identified. The most effective predictive model included miR-331-3p, extent of tumor resection and its localization as predictive markers. The model with a recurrence probability cut-off of 28% and small number of the input data (7) had a high area under the curve (AUC) (0.829), sensitivity (75%), specificity (75%), and acceptable leave-one-out cross-validation (LOOCV) test error (23.2%). miR-18a-5p, miR-130b-3p, miR-146a-5p, miR-1271-5p, age at diagnosis, gender and histological grade showed to be supportive but not predictive factors in the tested models.
Conclusions
This model is a novel predictor of meningioma recurrence that could facilitate optimal postoperative management. Moreover, combining this model with information on the molecular processes underpinning recurrence could enable the identification of distinct meningioma subtypes and targeted therapies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Ministry of Health of the Czech Republic (15-29021A); Palacky University Olomouc (LF 2019_003); Ministry of Education, Youth and Sports of the Czech Republic (LO1304, LM2015091); European Regional Development Fund (ENOCH CZ.02.1.01/0.0/0.0/16_019/0000868).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
5822 - Greek nursing students experience facing death in clinical practice
Presenter: Maria Dimoula
Session: Poster Display session 3
Resources:
Abstract
2866 - HOPEVOL: Hospice care appropriate to the wishes and needs of patients in the palliative terminal phase.
Presenter: Merel van Klinken
Session: Poster Display session 3
Resources:
Abstract
829 - Mindfulness-based stress reduction in early palliative care for advanced cancer patients : an italian single-centre study. MINDEEP
Presenter: Emilia Gianotti
Session: Poster Display session 3
Resources:
Abstract
2702 - Optimising Inpatient Oncology Care
Presenter: Lisa Judge
Session: Poster Display session 3
Resources:
Abstract
1527 - Analysis on the Implementation Results of Family Sickbed for Oncology Patients in Dongshi Township Health Centers from 2015 to 2017
Presenter: Yayu Huang
Session: Poster Display session 3
Resources:
Abstract
2054 - Exploring needs for palliative care and quality of life for oncology patients with advanced disease who undergo radiotherapy
Presenter: Foteini Antonopoulou
Session: Poster Display session 3
Resources:
Abstract
5605 - Cytotoxic contamination in cancer care settings – Risks and safety awareness among cancer nurses
Presenter: Sandra Lundman Vikberg
Session: Poster Display session 3
Resources:
Abstract
5769 - Understanding Chemotherapy - group education sessions prior to commencing chemotherapy
Presenter: Aileen McHale
Session: Poster Display session 3
Resources:
Abstract
2620 - Estimation of HPQ-based absenteeism and presenteeism in cancer patients via ResearchKit
Presenter: Shunsuke Kondo
Session: Poster Display session 3
Resources:
Abstract
4705 - Identifying falls-related variables and risk factors in hospitalised cancer patients
Presenter: Maria Montserrat Martí Dillet
Session: Poster Display session 3
Resources:
Abstract