Abstract 3290
Background
Meningioma growth rates are highly variable, even within benign subgroups, causing some cases to remain stable while others grow rapidly despite radiotherapy. Biomarkers that differentiate meningiomas by aggression and enable prediction of their biological behavior would therefore be clinically beneficial.
Methods
Microarrays were used to identify microRNA (miRNA) expression in primary recurrent, non-recurrent and secondary meningiomas of all grades. miRNAs found to be deregulated in the microarray experiments were validated by quantitative real-time PCR using samples from a cohort of 191 patients (median age 56). Statistical analysis of the resulting dataset revealed miRNA predictors of meningioma recurrence.
Results
miRNAs exhibiting differential expression (independently of histological grade) in primary recurrent, non-recurrent and secondary meningiomas were identified. The most effective predictive model included miR-331-3p, extent of tumor resection and its localization as predictive markers. The model with a recurrence probability cut-off of 28% and small number of the input data (7) had a high area under the curve (AUC) (0.829), sensitivity (75%), specificity (75%), and acceptable leave-one-out cross-validation (LOOCV) test error (23.2%). miR-18a-5p, miR-130b-3p, miR-146a-5p, miR-1271-5p, age at diagnosis, gender and histological grade showed to be supportive but not predictive factors in the tested models.
Conclusions
This model is a novel predictor of meningioma recurrence that could facilitate optimal postoperative management. Moreover, combining this model with information on the molecular processes underpinning recurrence could enable the identification of distinct meningioma subtypes and targeted therapies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Ministry of Health of the Czech Republic (15-29021A); Palacky University Olomouc (LF 2019_003); Ministry of Education, Youth and Sports of the Czech Republic (LO1304, LM2015091); European Regional Development Fund (ENOCH CZ.02.1.01/0.0/0.0/16_019/0000868).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
5678 - Nanomaterials Augmented LDI-TOF-MS for Hepatocellular Carcinoma Diagnosis and Classification
Presenter: Jian Zhou
Session: Poster Display session 3
Resources:
Abstract
2436 - Development and Validation of an RNA-Seq Assay for Gene Fusions Detection in Formalin-Fixed Paraffin-Embedded Samples
Presenter: Hua Dong
Session: Poster Display session 3
Resources:
Abstract
5271 - A Pilot Study to Implement an Artificial Intelligence (AI) System for Gastrointestinal Cancer Clinical Trial Matching
Presenter: Zhaohui Jin
Session: Poster Display session 3
Resources:
Abstract
4787 - A Blinded Comparison of Patient Treatments to Therapeutic Options Presented by an Artificial Intelligence-based Clinical Decision-support system
Presenter: Suthida Suwanvecho
Session: Poster Display session 3
Resources:
Abstract
5744 - OncOS: scalable and accurate next-generation sequencing analytics for precision oncology and personalized patient care
Presenter: Joe Thompson
Session: Poster Display session 3
Resources:
Abstract
3752 - The association between wearable device physical activity metrics and performance status in oncology: a systematic review
Presenter: Milan Kos
Session: Poster Display session 3
Resources:
Abstract
5820 - SomaticNET: neural network evaluation of somatic mutations in cancer
Presenter: Geoffroy Dubourg-Felonneau
Session: Poster Display session 3
Resources:
Abstract
4771 - Is there a role for Next-generation sequencing (NGS) profiling on metastatic non-colorectal gastrointestinal carcinomas (MNCGIC) in developing countries? A single center experience.
Presenter: Mauricio Ribeiro
Session: Poster Display session 3
Resources:
Abstract
1209 - Metastatic Cancer Whole-Exome Sequencing in daily practice
Presenter: Manon Réda
Session: Poster Display session 3
Resources:
Abstract
5702 - Genomic-Guided Individualized Precision Therapy in Refractory Metastatic Solid Tumor Patients with Extensively Poor Performance Status: A Chinese single institutional prospective observational real-world study
Presenter: Haitao Wang
Session: Poster Display session 3
Resources:
Abstract