Abstract 3290
Background
Meningioma growth rates are highly variable, even within benign subgroups, causing some cases to remain stable while others grow rapidly despite radiotherapy. Biomarkers that differentiate meningiomas by aggression and enable prediction of their biological behavior would therefore be clinically beneficial.
Methods
Microarrays were used to identify microRNA (miRNA) expression in primary recurrent, non-recurrent and secondary meningiomas of all grades. miRNAs found to be deregulated in the microarray experiments were validated by quantitative real-time PCR using samples from a cohort of 191 patients (median age 56). Statistical analysis of the resulting dataset revealed miRNA predictors of meningioma recurrence.
Results
miRNAs exhibiting differential expression (independently of histological grade) in primary recurrent, non-recurrent and secondary meningiomas were identified. The most effective predictive model included miR-331-3p, extent of tumor resection and its localization as predictive markers. The model with a recurrence probability cut-off of 28% and small number of the input data (7) had a high area under the curve (AUC) (0.829), sensitivity (75%), specificity (75%), and acceptable leave-one-out cross-validation (LOOCV) test error (23.2%). miR-18a-5p, miR-130b-3p, miR-146a-5p, miR-1271-5p, age at diagnosis, gender and histological grade showed to be supportive but not predictive factors in the tested models.
Conclusions
This model is a novel predictor of meningioma recurrence that could facilitate optimal postoperative management. Moreover, combining this model with information on the molecular processes underpinning recurrence could enable the identification of distinct meningioma subtypes and targeted therapies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Ministry of Health of the Czech Republic (15-29021A); Palacky University Olomouc (LF 2019_003); Ministry of Education, Youth and Sports of the Czech Republic (LO1304, LM2015091); European Regional Development Fund (ENOCH CZ.02.1.01/0.0/0.0/16_019/0000868).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
4614 - Predictors of Response to Checkpoint Inhibitors in Naïve and Ipilimumab-Refractory Melanoma
Presenter: Domenico Mallardo
Session: Poster Display session 3
Resources:
Abstract
2901 - IFN-γ/IL-10 ratio as predictive biomarker for response to anti-PD-1 therapy in metastatic melanoma patients
Presenter: Emilio Giunta
Session: Poster Display session 3
Resources:
Abstract
2306 - Multiplex Chromogenic Immunohistochemistry (IHC) for Spatial Analysis of Checkpoint-Positive Tumor Infiltrating Lymphocytes (TILs)
Presenter: Scott Ely
Session: Poster Display session 3
Resources:
Abstract
1678 - The role of PD-L1 expression as a predictive biomarker in advanced renal cell carcinoma: a meta-analysis of randomized clinical trials.
Presenter: Alberto Carretero-Gonzalez
Session: Poster Display session 3
Resources:
Abstract
5138 - Radiomic Features as a Non-invasive Biomarker to Predict Response to Immunotherapy in Recurrent or Metastatic Urothelial Carcinoma
Presenter: Kye Jin Park
Session: Poster Display session 3
Resources:
Abstract
5800 - Integrative combination of high-plex digital profiling techniques and cluster analysis to reveal complex immune biology in the tumor microenvironment of mesothelioma
Presenter: Carmen Ballesteros-Merino
Session: Poster Display session 3
Resources:
Abstract
5736 - Predictive factors of response to immunotherapy in 198 patients with metastatic non-microcytic lung cancer (mNSCLC): real world data from 2 university hospitals in Spain
Presenter: Juan Felipe Cordoba Ortega
Session: Poster Display session 3
Resources:
Abstract
5645 - Evaluating Lung CT Density Changes Among Patients with Extensive Stage Small Cell Lung Cancer (ES-SCLC) Treated with Thoracic Radiotherapy (TRT) alone or TRT Followed by Combined Ipilimumab (IPI) and Nivolumab (NIVO).
Presenter: Kujtim Latifi
Session: Poster Display session 3
Resources:
Abstract
1540 - Immuno-oncology therapy biomarkers differences between polyoma-virus positive and negative Merkel cell carcinomas
Presenter: Zoran Gatalica
Session: Poster Display session 3
Resources:
Abstract
4538 - Can we improve patient selection for phase 1 clinical trials (Ph1) based on Immuno-Oncology score prognostic index (VIO)?
Presenter: Ignacio Matos Garcia
Session: Poster Display session 3
Resources:
Abstract