Abstract 1833
Background
Although the personalized medicine has always focused on the genomic or proteomic characterization of tumor, medical imaging is still one of the major factors to guide therapy and to monitor the progression of the tumor. Radiomics is an emerging field that converts the medical image data into the mineable quantitative features via the automatically algorithms, and can server as a bridge between medical image, genomics and clinical-parameters. Serval studies have demonstrated that the radiomic-based model can predict outcome of RCC, but the correlation between radiomic features and histological subtypes of RCC is still unknown. The aim of this letter is to focus on the ability of radiomics to identify the histological subtypes and metastasis of RCC.
Methods
This study included Forty-four patients diagnosed with renal tumor. For each renal lesion, The CT images of volume of interest (VOI) were obtained semi-automatically by two experienced nuclear medicine physician, 85 texture features were extracted from each VOI using the first-order statistics features, Shape Based Features, Gray Level Neighboring Gray Level Dependence Matrix and Neighboring Gray Tone Difference Matrix.
Results
To investigate the value of radiomic features to capture phenotypic differences of RCC, we performed Unsupervised Clustering of patients with similar radiomic expression patterns. We analyzed the two main clusters of patients with clinical parameters, and found that the tumor clusters were statistically and significantly associated with primary tumor stage (P < 0.001), M-stage (P = 0.049) and benign (P = 0.037), wherein high T-stages, M-stage and tumor group showed in cluster II. RCC histology and N-stage (lymph-node) did not reach statistical significance for their association with the radiomic expression patterns (P = 0.165, 0.361, respectively). In addition, we analyzed the overall survival (OS) of the each radiomic features, and showed that P25, IMC1 and IMC2 were associated with OS (P = 0.002, 0.002, 0.016, respectively, log-rank test).
Conclusions
The radiomic features from medical images could be helpful in deciphering T-stages, metastasis and benign of RCC and may have potential as imaging biomarker for prediction of RCC overall survival.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Zhejiang Cancer Hospital.
Funding
National Natural Science Foundation of China (No 81402117, 81671775), Natural Science Foundation of Zhejiang Province (No LY17H160043) and Qianjiang talent plan of Zhejiang Province (No QJD1602025).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
2108 - Biomarker analyses of ramucirumab in patients with platinum refractory urothelial cancer from RANGE, a global, randomized, double-blind, phase 3 study.
Presenter: Michiel Van der Heijden
Session: Poster Display session 3
Resources:
Abstract
3090 - Comparison of Immuno-Oncology (IO) Biomarkers in Adenocarcinoma (ACB), Urothelial Carcinoma (UCB) and Squamous Cell Carcinoma (SCCB) of the Bladder, with interim results from PURE01
Presenter: Daniele Raggi
Session: Poster Display session 3
Resources:
Abstract
5211 - Potential role of a clinical, taxonomical classification and RNA expression integrated signature to predict response to neoadjuvant platinum-based chemotherapy in muscle-invasive bladder cancer (MIBC) patients
Presenter: Albert Font
Session: Poster Display session 3
Resources:
Abstract
3206 - Hyperphosphatemia due to Erdafitinib (a Pan-FGFR Inhibitor) and Anti-tumor Activity Among Patients (Pts) with Advanced Urothelial Carcinoma (UC)
Presenter: Scott Tagawa
Session: Poster Display session 3
Resources:
Abstract
3110 - Prognostic role of FGFR Mutations and FGFR mRNA expression in metastatic urothelial cancer treated with anti-PD(L1) inhibitors in first and second line setting
Presenter: Florian Roghmann
Session: Poster Display session 3
Resources:
Abstract
3564 - Circulating tumour DNA (ctDNA) utility as a biomarker for metastatic urothelial carcinoma (mUC)
Presenter: Jean-Michel Lavoie
Session: Poster Display session 3
Resources:
Abstract
2760 - Comparative analysis of tumor mutational burden (TMB) prediction methods and its association with determinants of the tumor immune microenvironment of urothelial bladder cancer (UBC)
Presenter: Markus Eckstein
Session: Poster Display session 3
Resources:
Abstract
2513 - The Immunoscore in patients with urothelial carcinoma treated with neoadjuvant chemotherapy: clinical significance for pathological response and survival
Presenter: Elise Nassif
Session: Poster Display session 3
Resources:
Abstract
2835 - Genomic analysis of urothelial cancer and associations with treatment choice and outcome
Presenter: David Sarid
Session: Poster Display session 3
Resources:
Abstract
5763 - cfDNA is an acceptable but insufficient means of characterizing FGFR3 mutation in patients with metastatic urothelial cancer (mUC)
Presenter: Sumanta Pal
Session: Poster Display session 3
Resources:
Abstract