Abstract 1833
Background
Although the personalized medicine has always focused on the genomic or proteomic characterization of tumor, medical imaging is still one of the major factors to guide therapy and to monitor the progression of the tumor. Radiomics is an emerging field that converts the medical image data into the mineable quantitative features via the automatically algorithms, and can server as a bridge between medical image, genomics and clinical-parameters. Serval studies have demonstrated that the radiomic-based model can predict outcome of RCC, but the correlation between radiomic features and histological subtypes of RCC is still unknown. The aim of this letter is to focus on the ability of radiomics to identify the histological subtypes and metastasis of RCC.
Methods
This study included Forty-four patients diagnosed with renal tumor. For each renal lesion, The CT images of volume of interest (VOI) were obtained semi-automatically by two experienced nuclear medicine physician, 85 texture features were extracted from each VOI using the first-order statistics features, Shape Based Features, Gray Level Neighboring Gray Level Dependence Matrix and Neighboring Gray Tone Difference Matrix.
Results
To investigate the value of radiomic features to capture phenotypic differences of RCC, we performed Unsupervised Clustering of patients with similar radiomic expression patterns. We analyzed the two main clusters of patients with clinical parameters, and found that the tumor clusters were statistically and significantly associated with primary tumor stage (P < 0.001), M-stage (P = 0.049) and benign (P = 0.037), wherein high T-stages, M-stage and tumor group showed in cluster II. RCC histology and N-stage (lymph-node) did not reach statistical significance for their association with the radiomic expression patterns (P = 0.165, 0.361, respectively). In addition, we analyzed the overall survival (OS) of the each radiomic features, and showed that P25, IMC1 and IMC2 were associated with OS (P = 0.002, 0.002, 0.016, respectively, log-rank test).
Conclusions
The radiomic features from medical images could be helpful in deciphering T-stages, metastasis and benign of RCC and may have potential as imaging biomarker for prediction of RCC overall survival.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Zhejiang Cancer Hospital.
Funding
National Natural Science Foundation of China (No 81402117, 81671775), Natural Science Foundation of Zhejiang Province (No LY17H160043) and Qianjiang talent plan of Zhejiang Province (No QJD1602025).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
2036 - Salivary metabolomics for colorectal cancer detection
Presenter: Hiroshi Kuwabara
Session: Poster Display session 3
Resources:
Abstract
1868 - Evaluation and diagnostic potential of plasma biomarkers in bladder cancer
Presenter: Veronika Voronova
Session: Poster Display session 3
Resources:
Abstract
3655 - Liquid biopsy assays using combined circulating tumor cells and circulating tumor DNA in the same patients for the diagnosis of primary lung cancer
Presenter: Yongjoon Suh
Session: Poster Display session 3
Resources:
Abstract
3685 - Peripheral Cytotoxic T Cell Correlates with Tumor Mutational Burden and is Predictive for Progression Free Survival in Advanced Breast Cancer
Presenter: Xiao-ran Liu
Session: Poster Display session 3
Resources:
Abstract
1050 - Splenic Metabolic Activity as Biomarker in Cervical Cancer
Presenter: Emiel De Jaeghere
Session: Poster Display session 3
Resources:
Abstract
1413 - Identification of distinct subtypes revealing prognostic and therapeutic relevance in diffuse type gastric cancer
Presenter: Seon-Kyu Kim
Session: Poster Display session 3
Resources:
Abstract
2140 - Recurrence risk evaluation in stage IB/IIA gastric cancer with TP53 codon 72 polymorphisms
Presenter: Satoshi Nishizuka
Session: Poster Display session 3
Resources:
Abstract
1573 - Identification and validation of a prognostic 4 genes signature for hepatocellular carcinoma: integrated ceRNA network analysis
Presenter: Yongcong Yan
Session: Poster Display session 3
Resources:
Abstract
1196 - Plasma KIM-1 is associated with clinical outcomes after resection for localized renal cell carcinoma: A trial of the ECOG-ACRIN Research Group (E2805)
Presenter: Wenxin Xu
Session: Poster Display session 3
Resources:
Abstract
2657 - Prognostic immunoprofiling of muscle invasive bladder cancer (MIBC) patients in a multicentre setting
Presenter: Katharina Nekolla
Session: Poster Display session 3
Resources:
Abstract