Abstract 2788
Background
Deep learning (DL) is one of the best approaches to predict nonlinear behaviors from high dimensional data. Nevertheless predicting the outcome of patients affected by cancers from transcriptomic data has shown limited performance, even with DL (C-index usually <0.65). Transfer learning is a DL two-step method where a model is pre-trained for a basic task on large amount of data, and then fine-tuned on the aimed task. We hypothesized that using TL with RNAseq may improve the performances of cancer patients’ outcome estimation.
Methods
The model was a Multi-Mayer Perceptron (MLP) with 22913 inputs corresponding to genes bulk tumor whole genome RNAseq expression analysis. An important restriction was applied to the number of units at second layer (N = 100), with further linear decrease across subsequent layers. Architecture of the model (number of layers, skip connections), L1 normalization value and learning rate were optimized by grid search on 30 parallel models. Training was performed using Keras package in R. Data were split into 70% training, 15% cross validation, 15% validation for each step, without contamination between the 2 transfer learning steps. The pre-training step consisted in predicting the organs of sample origin using 17.487 public RNAseq data of normal & cancer tissues (GTEX from gtexportal.org & TCGA from cBioportal.org). Fine-tuning on patients survival used 6401 training tumors. The model’s performance on survival prediction was evaluated by C-index and the area under the survival receiver-operating characteristic curve (AUROC).
Results
The pre-training using GTEx and TCGA reached very high performance with validation accuracy of 0.96 to predict organ of origins for the best model (all models had validation accuracy > 0.9). Fine-tuning on survival, the prognostic performance of the best model on the validation cohort was C-index=0.74 and AUROC= 0.81 (80% of models had a C-index > 0.6). The best model had 8 hidden layers and a small penalization value.
Conclusions
Thanks to this original transfer learning method, we achieved a high performance to estimate cancer patients’ prognostic from whole genome expression, a classically challenging task. Learning on public databases is a valuable method of DL for personalized cancer care.
Clinical trial identification
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
E. Angevin: Advisory / Consultancy: Amgen; Advisory / Consultancy: Astellas; Advisory / Consultancy: AstraZeneca; Advisory / Consultancy: Bayer; Advisory / Consultancy: BeiGene; Advisory / Consultancy: BMS; Advisory / Consultancy: Celgene; Advisory / Consultancy: DebioPharma; Advisory / Consultancy: Genentech; Advisory / Consultancy: Ipsen; Advisory / Consultancy: Janssen; Advisory / Consultancy: Lilly; Advisory / Consultancy: MedImmune; Advisory / Consultancy: Novartis; Advisory / Consultancy: Pfizer; Advisory / Consultancy: Roche; Advisory / Consultancy: Sanofi; Advisory / Consultancy: Orion. A. Hollebecque: Advisory / Consultancy: Amgen; Advisory / Consultancy: Spectrum Pharmaceuticals; Advisory / Consultancy: Lilly; Advisory / Consultancy: Debiopharm; Travel / Accommodation / Expenses: Servier; Travel / Accommodation / Expenses: Amgen; Travel / Accommodation / Expenses: Lilly; Travel / Accommodation / Expenses: Incyte; Travel / Accommodation / Expenses: Debiopharm. E. Deutsch: Advisory / Consultancy: Boehringer; Advisory / Consultancy: Medimune; Advisory / Consultancy: Amgen; Research grant / Funding (self): AstraZeneca; Research grant / Funding (self): biotrachea; Research grant / Funding (institution): BristolMyersSquidd; Research grant / Funding (self): Clevelex; Research grant / Funding (self): EDF; Research grant / Funding (self): Lilly; Research grant / Funding (self): GlaxoSmisthKline; Research grant / Funding (self): Merk; Research grant / Funding (self): Nanobiotix; Research grant / Funding (self): Oseo; Research grant / Funding (self): Ray Search Laboratory; Research grant / Funding (self): Roche; Research grant / Funding (self): Ipsen; Research grant / Funding (self): Servier; Research grant / Funding (self): Takeda. C. Massard: Advisory / Consultancy: Amgen; Advisory / Consultancy: Astellas; Advisory / Consultancy: AstraZeneca; Advisory / Consultancy: Bayer; Advisory / Consultancy: BeiGene; Advisory / Consultancy: BMS; Advisory / Consultancy: Celgene; Advisory / Consultancy: DebioPharma; Advisory / Consultancy: Genentech; Advisory / Consultancy: Ipsen; Advisory / Consultancy: Janssen; Advisory / Consultancy: Lilly; Advisory / Consultancy: MedImmune; Advisory / Consultancy: Novartis; Advisory / Consultancy: Pfizer; Advisory / Consultancy: Roche; Advisory / Consultancy: Sanofi; Advisory / Consultancy: Orion. L. Verlingue: Research grant / Funding (self): Bristol-Myers Squibb; Advisory / Consultancy: Pierre Fabre; Advisory / Consultancy: Adaptherapy. All other authors have declared no conflicts of interest.
Resources from the same session
3047 - Health-related quality of life in Greek haematogical malignancies patients undergoing chemotherapy
Presenter: Maria Lavdaniti
Session: Poster Display session 3
Resources:
Abstract
1121 - Experiences of endocrine therapy after breast cancer surgery
Presenter: Susanne Ahlstedt Karlsson
Session: Poster Display session 3
Resources:
Abstract
2305 - The effects of progressive muscle relaxation and mindfulness meditation on fatigue, coping styles, and quality of life in breast cancer patients receiving adjuvant paclitaxel regimen: An-assessor blinded, three-arm randomized controlled trial
Presenter: Zehra Gok Metin
Session: Poster Display session 3
Resources:
Abstract
4561 - Agreement between breast cancer patients and oncologists on the severity of patients’ symptoms and functions during a one-year follow-up after treatment.
Presenter: Randi Reidunsdatter
Session: Poster Display session 3
Resources:
Abstract
1768 - Taste Changes and Associated Factors in Patients Receiving Chemotherapy
Presenter: Gulcan Bagcivan
Session: Poster Display session 3
Resources:
Abstract
1830 - CART-19: a comparative between literature versus experience
Presenter: Cassandra Andersson Vila
Session: Poster Display session 3
Resources:
Abstract
4027 - Unplanned emergency department use by people receiving ambulatory anti-cancer agents with potential febrile neutropenia
Presenter: Meritxell Casanovas-Blanco
Session: Poster Display session 3
Resources:
Abstract
4754 - Examining the benefits of medical exercise during radiotherapy in patients after mastectomy
Presenter: Nikolina Dodlek
Session: Poster Display session 3
Resources:
Abstract
2510 - Assessment Quality of Life with Hand-Foot Syndrome Induced by Apatinib Combined with Anti-PD-1 Therapy in NSCLC
Presenter: Qi Jiang
Session: Poster Display session 3
Resources:
Abstract
2989 - Adverse effects of chemotherapy influence the patients’ quality of life : Analysis of implicated factors
Presenter: Maria Lavdaniti
Session: Poster Display session 3
Resources:
Abstract