Oops, you're using an old version of your browser so some of the features on this page may not be displaying properly.

MINIMAL Requirements: Google Chrome 24+Mozilla Firefox 20+Internet Explorer 11Opera 15–18Apple Safari 7SeaMonkey 2.15-2.23

Poster Display session 3

2788 - Enhanced performance of prognostic estimation from TCGA RNAseq data using transfer learning.

Date

30 Sep 2019

Session

Poster Display session 3

Topics

Translational Research

Tumour Site

Presenters

Helene Vanacker

Citation

Annals of Oncology (2019) 30 (suppl_5): v25-v54. 10.1093/annonc/mdz239

Authors

H. Vanacker1, E. Angevin1, A. Hollebecque1, R. Sun2, E. Deutsch3, A. Zynovyev4, L. Calzone4, E. Barillot4, C. Massard1, L. Verlingue1

Author affiliations

  • 1 Drug Development Department (ditep), Gustave Roussy - Cancer Campus, 94805 - Villejuif/FR
  • 2 Department Of Radiation Oncology, Gustave Roussy Cancer Campus, 94800 - Villejuif/FR
  • 3 Department Of Radiation Oncology, Radiomics Team, Molecular Radiotherapy Inserm U1030, University Paris-saclay, Faculty Of Medicine, Gustave Roussy Cancer Campus, 94800 - Villejuif/FR
  • 4 U900 Bioinformatics Biostatistics And Epidemiology, Institut Curie, 75005 - Paris/FR

Resources

Login to get immediate access to this content.

If you do not have an ESMO account, please create one for free.

Abstract 2788

Background

Deep learning (DL) is one of the best approaches to predict nonlinear behaviors from high dimensional data. Nevertheless predicting the outcome of patients affected by cancers from transcriptomic data has shown limited performance, even with DL (C-index usually <0.65). Transfer learning is a DL two-step method where a model is pre-trained for a basic task on large amount of data, and then fine-tuned on the aimed task. We hypothesized that using TL with RNAseq may improve the performances of cancer patients’ outcome estimation.

Methods

The model was a Multi-Mayer Perceptron (MLP) with 22913 inputs corresponding to genes bulk tumor whole genome RNAseq expression analysis. An important restriction was applied to the number of units at second layer (N = 100), with further linear decrease across subsequent layers. Architecture of the model (number of layers, skip connections), L1 normalization value and learning rate were optimized by grid search on 30 parallel models. Training was performed using Keras package in R. Data were split into 70% training, 15% cross validation, 15% validation for each step, without contamination between the 2 transfer learning steps. The pre-training step consisted in predicting the organs of sample origin using 17.487 public RNAseq data of normal & cancer tissues (GTEX from gtexportal.org & TCGA from cBioportal.org). Fine-tuning on patients survival used 6401 training tumors. The model’s performance on survival prediction was evaluated by C-index and the area under the survival receiver-operating characteristic curve (AUROC).

Results

The pre-training using GTEx and TCGA reached very high performance with validation accuracy of 0.96 to predict organ of origins for the best model (all models had validation accuracy > 0.9). Fine-tuning on survival, the prognostic performance of the best model on the validation cohort was C-index=0.74 and AUROC= 0.81 (80% of models had a C-index > 0.6). The best model had 8 hidden layers and a small penalization value.

Conclusions

Thanks to this original transfer learning method, we achieved a high performance to estimate cancer patients’ prognostic from whole genome expression, a classically challenging task. Learning on public databases is a valuable method of DL for personalized cancer care.

Clinical trial identification

Legal entity responsible for the study

The authors.

Funding

Has not received any funding.

Disclosure

E. Angevin: Advisory / Consultancy: Amgen; Advisory / Consultancy: Astellas; Advisory / Consultancy: AstraZeneca; Advisory / Consultancy: Bayer; Advisory / Consultancy: BeiGene; Advisory / Consultancy: BMS; Advisory / Consultancy: Celgene; Advisory / Consultancy: DebioPharma; Advisory / Consultancy: Genentech; Advisory / Consultancy: Ipsen; Advisory / Consultancy: Janssen; Advisory / Consultancy: Lilly; Advisory / Consultancy: MedImmune; Advisory / Consultancy: Novartis; Advisory / Consultancy: Pfizer; Advisory / Consultancy: Roche; Advisory / Consultancy: Sanofi; Advisory / Consultancy: Orion. A. Hollebecque: Advisory / Consultancy: Amgen; Advisory / Consultancy: Spectrum Pharmaceuticals; Advisory / Consultancy: Lilly; Advisory / Consultancy: Debiopharm; Travel / Accommodation / Expenses: Servier; Travel / Accommodation / Expenses: Amgen; Travel / Accommodation / Expenses: Lilly; Travel / Accommodation / Expenses: Incyte; Travel / Accommodation / Expenses: Debiopharm. E. Deutsch: Advisory / Consultancy: Boehringer; Advisory / Consultancy: Medimune; Advisory / Consultancy: Amgen; Research grant / Funding (self): AstraZeneca; Research grant / Funding (self): biotrachea; Research grant / Funding (institution): BristolMyersSquidd; Research grant / Funding (self): Clevelex; Research grant / Funding (self): EDF; Research grant / Funding (self): Lilly; Research grant / Funding (self): GlaxoSmisthKline; Research grant / Funding (self): Merk; Research grant / Funding (self): Nanobiotix; Research grant / Funding (self): Oseo; Research grant / Funding (self): Ray Search Laboratory; Research grant / Funding (self): Roche; Research grant / Funding (self): Ipsen; Research grant / Funding (self): Servier; Research grant / Funding (self): Takeda. C. Massard: Advisory / Consultancy: Amgen; Advisory / Consultancy: Astellas; Advisory / Consultancy: AstraZeneca; Advisory / Consultancy: Bayer; Advisory / Consultancy: BeiGene; Advisory / Consultancy: BMS; Advisory / Consultancy: Celgene; Advisory / Consultancy: DebioPharma; Advisory / Consultancy: Genentech; Advisory / Consultancy: Ipsen; Advisory / Consultancy: Janssen; Advisory / Consultancy: Lilly; Advisory / Consultancy: MedImmune; Advisory / Consultancy: Novartis; Advisory / Consultancy: Pfizer; Advisory / Consultancy: Roche; Advisory / Consultancy: Sanofi; Advisory / Consultancy: Orion. L. Verlingue: Research grant / Funding (self): Bristol-Myers Squibb; Advisory / Consultancy: Pierre Fabre; Advisory / Consultancy: Adaptherapy. All other authors have declared no conflicts of interest.

This site uses cookies. Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used.

For more detailed information on the cookies we use, please check our Privacy Policy.

Customise settings
  • Necessary cookies enable core functionality. The website cannot function properly without these cookies, and you can only disable them by changing your browser preferences.