Abstract 5045
Background
Systemic anti-cancer treatment is hampered by drug resistance (DR). However, little is known about the pharmacokinetic consequences of genetic changes in tumor cells. We hypothesize that somatic point mutations, small indels, copy number variations (sCNV) and/or structural variations in genes encoding drug transporters are drivers of DR mechanisms in tumor cells. We therefore performed an explorative analysis to quantify somatic aberrations that could reflect DR mechanisms and, in parallel, identify their stressors.
Methods
We interrogated whole-genome sequencing (WGS) data from a Dutch pan-cancer cohort of metastatic cancer patients (N = 3149 at ∼118x and matched peripheral blood at∼38x read depth), of which more than half had failed previous systemic treatment. Somatic aberrations (germline filtered) were analyzed in drug transporters (N = 51), present on the Drug Metabolizing Enzymes and Transporters (DMET™ plus) panel (v.32). Enrichment of somatic DR variants was estimated by assessing nonsynonymous/synonymous mutation ratio deviations (dN/dS) and sCNV were detected with GISTIC2.
Results
In total, 5137 somatic variants (2645 in treatment-naive and 2484 in pretreated patients) in drug transporter genes were observed in 1651 patients (52.4%) of whom 55.1% were systemically pretreated. Three genes (ABCB4, ABCC5, SLCO1B1) showed dN/dS enrichment (p = 0.0142 - 0.0364). sCNVs (N = 7656; 5849 deep gene-level gains and 1807 deletions) were observed in 1906 patients (60.5%). Interestingly, we identified 20 somatic DR-related variants in 12 patients (58.3% pretreated), not present in the matching germline samples, that were identical to SNP variants on DMET™ plus.
Conclusions
In the largest metastatic pan-cancer WGS cohort worldwide, we characterized the pharmacogenomic drug transporter landscape in tumor cells. Potentially, the incidence of somatic variants in pharmacogenes accounts for acquired DR in pretreated patients and/or intrinsic DR. We will extend our study with analyses of prior treatments and germline variations, in order to assess the clinical consequences of the variations and improve clinical decision-making.
Clinical trial identification
NCT01855477.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
This publication and the underlying study have been made possible partly on the basis of the data that Hartwig Medical Foundation and the Center of Personalised Cancer Treatment (CPCT) have made available to the study.
Disclosure
C. van Herpen: Advisory/Consultancy: Bayer; Advisory/Consultancy, Research grant/Funding (institution): Bristol-Myers Squibb; Advisory / Consultancy, Research grant / Funding (institution): Ipsen; Advisory / Consultancy, Research grant / Funding (institution): MSD; Advisory / Consultancy: Regeneron; Research grant / Funding (institution): AstraZeneca; Research grant / Funding (institution): Merck; Research grant / Funding (institution): Novartis; Research grant / Funding (institution): Sanofi. R.H.J. Mathijssen: Research grant / Funding (institution), Travel / Accommodation / Expenses: Astellas; Research grant / Funding (institution), Travel / Accommodation / Expenses: Pfizer; Research grant / Funding (institution): Bayer; Research grant / Funding (institution): Boehringer; Research grant / Funding (institution): Cristal Therapeutics; Honoraria (self), Research grant / Funding (institution): Novartis; Research grant / Funding (institution): Pamgene; Research grant / Funding (institution): Roche; Research grant / Funding (institution): Sanofi; Honoraria (self): Servier. All other authors have declared no conflicts of interest.
Resources from the same session
4290 - Characterization of the mechanism of action and efficacy of MEN1611 (PA799), a novel PI3K inhibitor, in breast cancer preclinical models.
Presenter: Alessio Fiascarelli
Session: Poster Display session 3
Resources:
Abstract
2167 - Neat-1: culprit lnRNA tying PIG-C, MSLN, CD80 in TNBC
Presenter: Nada Hussein
Session: Poster Display session 3
Resources:
Abstract
1829 - A novel RAF/MEK inhibitor CH5126766 in phase 1 clinical trial has an effectiveness in the combination with eribulin for the treatment of triple negative breast cancer
Presenter: Hisako Ono
Session: Poster Display session 3
Resources:
Abstract
4357 - Identification of a stemness-related gene panel associated with BET inhibition in triple negative breast cancer
Presenter: Eva Galan-Moya
Session: Poster Display session 3
Resources:
Abstract
5163 - Preclinical Evaluation targeting both IGF1R and IR in Triple Negative Breast Cancer
Presenter: Alex Eustace
Session: Poster Display session 3
Resources:
Abstract
832 - Monospecific antibody targeting of CDH11 inhibits epithelial-to-mesenchymal transition and represses cancer stem cell-like phenotype by up-regulating miR-335 in metastatic breast cancer, in vitro and in vivo.
Presenter: Jia-Hong Chen
Session: Poster Display session 3
Resources:
Abstract
3781 - Pharmacological screening with Chk1 inhibitors identify synergistic agents to overcome resistance to platinums in basal breast and ovarian cancer
Presenter: Ana Lucia Sanabria
Session: Poster Display session 3
Resources:
Abstract
3275 - Comparison of 11 circulating miRNAs and CA125 kinetics in ovarian cancer during first line treatment: data from the randomized CHIVA trial (a GINECO-GCIG study)
Presenter: Patrick Robelin
Session: Poster Display session 3
Resources:
Abstract
3391 - Inhibiting Ehmt2 and Ezh2 histone methyltransferases alters the immune microenvironment in a Trp53-/- murine ovarian cancer model
Presenter: Pavlina Spiliopoulou
Session: Poster Display session 3
Resources:
Abstract
3839 - Fenofibrate impairs pro-tumorigenic potential of cancer stem cell-like cells within drug-resistant prostate cancer cell populations.
Presenter: Tomasz Wróbel
Session: Poster Display session 3
Resources:
Abstract