Abstract 5938
Background
Oesophageal cancer is the 6th most common cause of cancer death with incidence of adenocarcinomas (EAC) increasing in western countries. Long term survival is poor (<5%) (ESMO guidelines 2016) and mutational signatures of EAC suggest patients with "mutagenic" or "DDR" signatures can benefit from immune-checkpoint blockers (ICB) (Secriert et al. Nat gen 2016). However, there is uncertainty around the population to benefit from ICBs. Circulating tumour DNA (ctDNA) can be used to predict responses to immuno-oncology (IO) agents (Howell J, Trans res 2017). TP53 mutations is frequent in EAC 6 and ctDNA-TP53 mutations can be measured/followed in plasma to track tumour behaviour (response, clonal changes) during treatment (Zill O. Clin Can Res 2018, Fisher O. Gut 2017). Next-generation sequencing (NGS) provides high sensitivity, coverage and the possibility to interrogate tumour treatment-response and heterogeneity.
Trial design
CALIBRATION is a single-centre, open-label, pilot trial of durvalumab (1500mg/4w) for patients with EAC progressing to standard chemotherapy. Pts with measurable disease undergo biopsies at screening/C3/progression alongside weekly blood sampling. Primary objective: asses if early changes in TP53 ctDNA variant allele fraction (VAF) levels, by weeks 4 and/ or 7 can predict durable (6 month) RECIST V 1.1 responses (Complete or Partial Response, Stable Disease). We plan to recruit 19 pts with a 5 % significance (one-sided) and 80 % power to detect if ctDNA changes correctly predict radiological response in ≥ 70 % pts. The trial opened to recruitment in October 2018, 13 pts have been pre-screened and 4 pts included. An interim analysis is planned for September 2019. Secondary endpoints include characterization of paired blood/biopsy samples from pts pre/post durvalumab of: • genomic heterogeneity (evolution of mutational signatures under IO) and changes in the tumour microenvironment (dynamics of T-cell populations). • changes in ctDNA and PBMC markers to identify biomarkers of resistance/response. • predictive value of the mutagenic and DDR signatures to predict response to IO compounds.
Clinical trial identification
NCT03653052.
Editorial acknowledgement
Legal entity responsible for the study
Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge.
Funding
AstraZeneca.
Disclosure
S. Dovedi: Leadership role: AstraZeneca.
Resources from the same session
3523 - Results of a global external quality assessment scheme for EGFR testing on liquid biopsy
Presenter: Nicola Normanno
Session: Poster Display session 3
Resources:
Abstract
3295 - Clinical impact of plasma Next-Generation Sequencing (NGS) in advanced Non-small cell lung cancer (aNSCLC)
Presenter: Laura Bonanno
Session: Poster Display session 3
Resources:
Abstract
5632 - Feasibility study of a ctEGFR prototype assay on the fully automated Idylla™ platform
Presenter: Martin Reijans
Session: Poster Display session 3
Resources:
Abstract
3614 - Enhanced Access to EGFR Molecular Testing in NSCLC using a Cell-Free DNA Tube for Liquid Biopsy
Presenter: Theresa May
Session: Poster Display session 3
Resources:
Abstract
5664 - Analysis of circulating tumor DNA in paired plasma and sputum samples of EGFR-mutated NSCLC patients
Presenter: Christina Grech
Session: Poster Display session 3
Resources:
Abstract
4945 - Liquid biopsy and Array Comparative Genomic Hybridization (aCGH)
Presenter: Panagiotis Apostolou
Session: Poster Display session 3
Resources:
Abstract
5746 - Next-generation sequencing panel verification to detect low frequency single nucleotide and copy number variants from mixing cell line studies
Presenter: Rocio Rosas-Alonso
Session: Poster Display session 3
Resources:
Abstract
5901 - Automated rarefaction analysis for precision B and T cell receptor repertoire profiling from peripheral blood and FFPE-preserved tumor
Presenter: Luca Quagliata
Session: Poster Display session 3
Resources:
Abstract
2027 - A Heptamethine cyanine dye is a potential diagnostic marker for Myeloid-Derived Suppressor Cells
Presenter: Chaeyong Jung
Session: Poster Display session 3
Resources:
Abstract
5517 - Molecular fingerprinting in breast cancer (BC) screening using Quantum Optics (QO) technology combined with an artificial intelligence (AI) approach applying the concept of “molecular profiles at n variables (MPnV)”: a prospective pilot study.
Presenter: Jean-Marc Nabholtz
Session: Poster Display session 3
Resources:
Abstract