Abstract 2594
Background
Identifying low risk of disease recurrence in localised ccRCC is key for gatekeeping in the adjuvant therapy enrolment. Uncertainty increases the number of patients required for accrual to achieve statistical power. Current scoring systems are good at identifying very low and very high risk cohorts, but have not been proved to be as effective at accurately predicting disease recurrence in intermediate groups. These patients are perhaps those likely to benefit from intervention in addition to surgery, but many may be treated unnecessarily. Using digital pathology, image analysis and machine learning we sought to stratify for risk in this intermediate category.
Methods
Definiens Tissue studio and Developer XD were utilised for object thresholding to measure tumour cell nuclear morphological features on H&E digitised images from 120 ccRCC training set from UK and 217 ccRCC validation set from Singapore. Multiplexed immunofluorescence (mIF) was performed on 120 cases to co-detect neo-vasculature and pan-T cells. An algorithm was derived to measure spatial relationships between blood vessels and T cells. A statistical model was developed by generalised linear model with spatially adaptive local smoothing algorithm, having specificity prefixed (0.8-1) plus cross validation.
Results
Replacing manual nuclear grade with AI aided tumour cell nuclear morphological features improved the specificity of Leibovich score (LS) from 0.76 to 0.86 and from 0.84 to 0.94 in training and validation sets, respectively. Moreover, tumour microenvironment (TM) parameters significantly improved the specificity up to 0.93 in the training set. The negative predictive values of both LS 5 and 6 were zero, but by applying the algorithm the specificity for LS 5 and 6 cases became 0.93 and 0.40 respectively.
Conclusions
By applying image analysis it is possible to identify lower risk for recurrence patients in a conventionally identified intermediate risk group based on routine ccRCC H&E images, and multiplexed TM features. This approach to pathology should help refine selection of patients for clinical trials and form the basis of future AI-enabled prognostic and predictive algorithms in ccRCC.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Authors.
Funding
Renal Cancer Research Fund and NHS Lothian.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
5822 - Greek nursing students experience facing death in clinical practice
Presenter: Maria Dimoula
Session: Poster Display session 3
Resources:
Abstract
2866 - HOPEVOL: Hospice care appropriate to the wishes and needs of patients in the palliative terminal phase.
Presenter: Merel van Klinken
Session: Poster Display session 3
Resources:
Abstract
829 - Mindfulness-based stress reduction in early palliative care for advanced cancer patients : an italian single-centre study. MINDEEP
Presenter: Emilia Gianotti
Session: Poster Display session 3
Resources:
Abstract
2702 - Optimising Inpatient Oncology Care
Presenter: Lisa Judge
Session: Poster Display session 3
Resources:
Abstract
1527 - Analysis on the Implementation Results of Family Sickbed for Oncology Patients in Dongshi Township Health Centers from 2015 to 2017
Presenter: Yayu Huang
Session: Poster Display session 3
Resources:
Abstract
2054 - Exploring needs for palliative care and quality of life for oncology patients with advanced disease who undergo radiotherapy
Presenter: Foteini Antonopoulou
Session: Poster Display session 3
Resources:
Abstract
5605 - Cytotoxic contamination in cancer care settings – Risks and safety awareness among cancer nurses
Presenter: Sandra Lundman Vikberg
Session: Poster Display session 3
Resources:
Abstract
5769 - Understanding Chemotherapy - group education sessions prior to commencing chemotherapy
Presenter: Aileen McHale
Session: Poster Display session 3
Resources:
Abstract
2620 - Estimation of HPQ-based absenteeism and presenteeism in cancer patients via ResearchKit
Presenter: Shunsuke Kondo
Session: Poster Display session 3
Resources:
Abstract
4705 - Identifying falls-related variables and risk factors in hospitalised cancer patients
Presenter: Maria Montserrat Martí Dillet
Session: Poster Display session 3
Resources:
Abstract