Abstract 2594
Background
Identifying low risk of disease recurrence in localised ccRCC is key for gatekeeping in the adjuvant therapy enrolment. Uncertainty increases the number of patients required for accrual to achieve statistical power. Current scoring systems are good at identifying very low and very high risk cohorts, but have not been proved to be as effective at accurately predicting disease recurrence in intermediate groups. These patients are perhaps those likely to benefit from intervention in addition to surgery, but many may be treated unnecessarily. Using digital pathology, image analysis and machine learning we sought to stratify for risk in this intermediate category.
Methods
Definiens Tissue studio and Developer XD were utilised for object thresholding to measure tumour cell nuclear morphological features on H&E digitised images from 120 ccRCC training set from UK and 217 ccRCC validation set from Singapore. Multiplexed immunofluorescence (mIF) was performed on 120 cases to co-detect neo-vasculature and pan-T cells. An algorithm was derived to measure spatial relationships between blood vessels and T cells. A statistical model was developed by generalised linear model with spatially adaptive local smoothing algorithm, having specificity prefixed (0.8-1) plus cross validation.
Results
Replacing manual nuclear grade with AI aided tumour cell nuclear morphological features improved the specificity of Leibovich score (LS) from 0.76 to 0.86 and from 0.84 to 0.94 in training and validation sets, respectively. Moreover, tumour microenvironment (TM) parameters significantly improved the specificity up to 0.93 in the training set. The negative predictive values of both LS 5 and 6 were zero, but by applying the algorithm the specificity for LS 5 and 6 cases became 0.93 and 0.40 respectively.
Conclusions
By applying image analysis it is possible to identify lower risk for recurrence patients in a conventionally identified intermediate risk group based on routine ccRCC H&E images, and multiplexed TM features. This approach to pathology should help refine selection of patients for clinical trials and form the basis of future AI-enabled prognostic and predictive algorithms in ccRCC.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Authors.
Funding
Renal Cancer Research Fund and NHS Lothian.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
3290 - Identification of meningioma patients in high risk of tumor recurrence using microRNA profiling
Presenter: Josef Srovnal
Session: Poster Display session 3
Resources:
Abstract
2477 - Antecedent of cancer and mortality after the first ST segment elevation acute myocardial infarction treated with primary coronary angioplasty. A prospective cohort study
Presenter: Irene Sillero
Session: Poster Display session 3
Resources:
Abstract
1894 - Genomic characterisation of locally advanced pancreatic adenocarcinoma
Presenter: Sarah Picardo
Session: Poster Display session 3
Resources:
Abstract
3280 - Comparison of freshly prepared and frozen cells from colorectal cancer surgical samples for phenotyping experiments- a pilot study
Presenter: Sandra Mersakova
Session: Poster Display session 3
Resources:
Abstract
3419 - Hyaluronan (HA) Accumulation in the Tumor Microenvironment (TME) is Increased in Colorectal Cancer (CRC) and Associated with Consensus Molecular Subtypes (CMS) 4 Molecular Subtype
Presenter: Barbara Blouw
Session: Poster Display session 3
Resources:
Abstract
1833 - Evaluation of CT-based radiomics in patients with renal cell carcinoma
Presenter: An Zhao
Session: Poster Display session 3
Resources:
Abstract
5883 - Detection of Double Protein Expression in Diffuse Large B Cell Lymphoma
Presenter: Mohamed Gouda
Session: Poster Display session 3
Resources:
Abstract
5415 - Encyclopedic Tumor Analysis for organ agnostic treatment with Axitinib in combination regimens for advanced cancers
Presenter: Tim Crook
Session: Poster Display session 3
Resources:
Abstract
3297 - Computational model to predict response rate of clinical trials
Presenter: Orsolya Lorincz
Session: Poster Display session 3
Resources:
Abstract
4355 - Analysis of BRCA genes and homologous recombination deficiency (HRD) scores in tumours from patients (pts) with metastatic breast cancer (mBC) in the OlympiAD trial
Presenter: Mark Robson
Session: Poster Display session 3
Resources:
Abstract