Oops, you're using an old version of your browser so some of the features on this page may not be displaying properly.

MINIMAL Requirements: Google Chrome 24+Mozilla Firefox 20+Internet Explorer 11Opera 15–18Apple Safari 7SeaMonkey 2.15-2.23

Poster Display session 1

1580 - A novel risk classification system based on nomogram scores to predict survival of patients presenting with brain metastases at the first diagnosis of NSCLC

Date

28 Sep 2019

Session

Poster Display session 1

Topics

Tumour Site

Non-Small Cell Lung Cancer

Presenters

Pengfei Cui

Citation

Annals of Oncology (2019) 30 (suppl_5): v602-v660. 10.1093/annonc/mdz260

Authors

P. Cui1, Z. Liu2

Author affiliations

  • 1 Cancer Center, The First Hospital of Jilin University, 130021 - Changchun/CN
  • 2 Cancer Center, the First Hospital of Jilin University, 130021 - Changchun/CN

Resources

Login to get immediate access to this content.

If you do not have an ESMO account, please create one for free.

Abstract 1580

Background

Brain metastases (BMs) account for a relatively large proportion of patients with metastatic non-small cell lung cancer (NSCLC) both at the time of diagnosis and during the course of disease, which is a major cause leading to a significant increase in cancer-related mortality for NSCLC patients. We aimed to build a novel risk classification system to predict overall survival (OS) of patients presenting with BMs at the first diagnosis of NSCLC.

Methods

Data on NSCLC patients with BMs was extracted from the SEER database between 2010 and 2013. All cases were randomly divided into the training cohort and validation cohort (7:3). Cox regression was performed to select the independent predictors of OS. A nomogram was established for predicting 6-, 12- and 18-month OS. The prognostic performance of nomogram was evaluated using concordance indexes (C-indexes), calibration curves, and decision curve analyses (DCAs). All statistical analysis was performed with R software.

Results

According to the multivariate Cox regression of the training set, the following variables were contained in the nomogram prognostic model: age, marital status, sex, race, primary site, histological type, T stage, N stage, metastatic pattern, whether received radiotherapy and chemotherapy. The nomogram displayed good accuracy in predicting 6, 12 and 18 months OS. The C-indexes of training set and validation set were 0.729 and 0.723, respectively. The calibration curves showed excellent consistency between the actual results and the nomogram prediction, and the DCAs exhibited great clinical utility of the model. A new risk classification system based on nomogram scores was introduced to classify NSCLC patients with BMs into three subgroups. In the training cohort, the median OS of patients in the low-, intermediate- and high-risk groups was 11.0 months (95% confidence interval [CI] 10.3–11.7), 5.0 months (95% CI 4.6–5.4), and 2.0 months (95% CI 1.9–2.1), respectively.

Conclusions

We established a risk stratification system based on nomogram scores to predict the OS of patients presenting with BMs at initial diagnosis of NSCLC. These predictive models can act as auxiliary tools to guide treatment strategies and prognostic evaluation.

Clinical trial identification

Editorial acknowledgement

Legal entity responsible for the study

The authors.

Funding

Has not received any funding.

Disclosure

All authors have declared no conflicts of interest.

This site uses cookies. Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used.

For more detailed information on the cookies we use, please check our Privacy Policy.

Customise settings
  • Necessary cookies enable core functionality. The website cannot function properly without these cookies, and you can only disable them by changing your browser preferences.