Oops, you're using an old version of your browser so some of the features on this page may not be displaying properly.

MINIMAL Requirements: Google Chrome 24+Mozilla Firefox 20+Internet Explorer 11Opera 15–18Apple Safari 7SeaMonkey 2.15-2.23

Poster Display session 2

3944 - A novel nomogram and risk classification system predicting radiation pneumonitis in patients with esophageal cancer receiving radiotherapy


29 Sep 2019


Poster Display session 2


Tumour Site

Oesophageal Cancer


Lu Wang


Annals of Oncology (2019) 30 (suppl_5): v253-v324. 10.1093/annonc/mdz247


L. Wang1, X. Meng2, J. Yu2

Author affiliations

  • 1 Radiation Oncology, Shandong cancer hosptial, 440 - Jinan/CN
  • 2 Radiation Oncology, Shandong cancer hosptial, 250117 - Jinan/CN


Login to get immediate access to this content.

If you do not have an ESMO account, please create one for free.

Abstract 3944


We initially ascertained the value of inflammatory indexes in predicting severe acute radiation pneumonitis (SARP). Furthermore, we firstly built a novel nomogram and risk classification system integrating clinicopathological, dosimetric and biological parameters to individually and precisely identify SARP in patients with esophageal cancer (EC) who received radiotherapy (RT).


All data were collected from 312 EC patients. Logistic regression was used to choose predictors of SARP and then build nomogram. The validation of nomogram was performed by area under the ROC curve (AUC), calibration curves and decision curve analyses (DCA). A risk classification system was generated by recursive partitioning analysis (RPA).


The Subjective Global Assessment (SGA) score, pulmonary fibrosis score (PFS), planning target volume/total lungs volume (PTV/LV), mean lung dose (MLD) and systemic immuneinflammation index (SII) were independent predictors of SARP and finally incorporated into the nomogram. The AUC of nomogram for SARP prediction was 0.852, which was much higher than any other factor (range, 0.604-0.712). Calibration curves indicated favorable consistency between the nomogram prediction and the actual outcomes. DCA exhibited satisfactory clinical utility. A risk classification system was built to perfectly divide patients into three risk groups which were low-risk group (7.1%, score 0–158), intermediate-risk group (38%, score 159–280), and high-risk group (71.4%, score>280).


SGA score, PFS, PTV/LV, MLD and SII were potential valuable markers in predicting SARP. The constructed nomogram and corresponding risk classification system with superior prediction ability for SARP could assist in patients counseling and guide treatment decision making.

Clinical trial identification

Editorial acknowledgement

Legal entity responsible for the study

The authors.


Has not received any funding.


All authors have declared no conflicts of interest.

This site uses cookies. Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used.

For more detailed information on the cookies we use, please check our Privacy Policy.

Customise settings
  • Necessary cookies enable core functionality. The website cannot function properly without these cookies, and you can only disable them by changing your browser preferences.