Abstract 7P
Background
In current clinical practice, the routine approaches of axillary lymph node (ALN) status evaluation through sentinel lymph node biopsy (SLNB) is unsatisfied with high false-negative rate and brings significant complications. We aimed to develop a preoperative magnetic resonance imaging radiomic-based signature for predicting ALN metastasis (ALNM) in a non-invasive way.
Methods
A total of 1,090 early-stage invasive breast cancer patients from 4 institutions were enrolled in this multicenter, retrospective, diagnositc study. Radiomic signature for ALNM prediction were constructed by machine learning in 803 patients from Sun Yat-sen Memorial Hospital and Sun Yat-sen University Cancer Center (Training cohort). The clinical-radiomic siganture was constructed by combining radiomic signature and significant clinic-pathological risk factors and was validated in patients from prospective phase III trials [NCT01503905] (Internal validation cohort, n=106), and Shunde Hospital and Tungwah Hospital (External validation cohort, n=181). This study is registered with ClinicalTrials.gov (NCT04003558) and Chinese Clinical Trail Registry (ChiCTR1900024020).
Results
The radiomic signature for predicting ALNM consisted of intratumoral and ALN features showed AUCs of 0.91, 0.88, and 0.85 in the training, internal validation and external validation cohorts. The clinical-radiomic signature achieved the highest AUCs of 0.93, 0.91, and 0.91 in the training, internal validation and external validation cohorts, which successfully discriminate high- from low risk relapse patients (HR 0.12, 95% CI 0.03–0.53; P<0.001) and was similar to the performance in ALNM and non-ALNM (HR 0.28, 95% CI 0.09–0.87; P=0.002). In additon, the clinical-radiomic signature also performed well in the subgroup of N1, N2, N3 status (AUCs of 0.89, 0.90, 0.97).
Conclusions
This study developed a clinical-radiomic signature incorporated the intratumoral and ALN radiomic features and clinical risk factors, which could serve as a non-invasive tool to evaluate ALN status for guiding surgery plans of early-stage breast cancer patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
244P - Optimization of early diagnostics of cervical intraepitelial neoplasies and cervical cancer
Presenter: Zakhirova Nargiza
Session: e-Poster Display Session
245P - Clinicopathological features including response to platinum-based chemotherapy in endometrial carcinomas involving SWI/SNF complex inactivation.
Presenter: Izumi Tanimoto
Session: e-Poster Display Session
246P - Impact of genetically predicted elevated concentrations of C-reactive protein on ovarian cancer risk: A Mendelian randomization study
Presenter: Haoxin Peng
Session: e-Poster Display Session
247P - The role of p53 gene suppressor and bcl-2 oncoprotein in non-epithelial ovarian tumor prognosis determination among child and adolescent patients
Presenter: Anvar Shukullaev
Session: e-Poster Display Session
248P - The effect of progesterone on ALA-based PDT efficacy in uterine sarcoma cells
Presenter: Ellie Chu
Session: e-Poster Display Session
249P - A Retrospective Study on the Treatment Response of Locally Advanced Cervical Cancer Patients to Combination Chemoradiotherapy
Presenter: Siti Nabihah Sahralidin
Session: e-Poster Display Session
250P - Health-related Quality of Life in Women with Cervical Cancer
Presenter: Almagul Zhabagina
Session: e-Poster Display Session
251P - Tendency of morbidity and mortality in cervical cancer in the last 10 years in the Republic of Uzbekistan
Presenter: Mirzagaleb Tillyashaykhov
Session: e-Poster Display Session
252P - Secondary data analysis of newly diagnosed advanced ovarian cancer in South Korea
Presenter: Soo Young Jeong
Session: e-Poster Display Session
253P - Non-Epithelial Tumours of Ovary, An Experience from Qatar
Presenter: Ammar Madani
Session: e-Poster Display Session