Abstract 407P
Background
Tumor mutation burden (TMB) served as an effective biomarker predicting efficacy of mono-immunotherapy for non-small cell lung cancer (NSCLC). While, establishing a precise TMB predicting model is essential to monitor which populations are likely to respond to immunotherapy or prognosis and to maximize the benefits of treatment.
Methods
Available Formalin-fixed paraffin embedded tumor tissues were collected from 499 patients with NSCLC. Targeted sequencing of 636 cancer related genes were performed and TMB was calculated.
Results
Distribution of TMB was significantly (p < 0.001) correlated with sex, clinical features (pathological /histological subtype, pathological stage, lymph node metastasis and lympho-vascular invasion). It was also significantly (p < 0.001) associated with mutations in genes like TP53, EGFR, PIK3CA, KRAS, EPHA3, TSHZ3, FAT3, NAV3, KEAP1, NFE2L2, PTPRD, LRRK2, STK11, NF1, KMT2D and GRIN2A. No significant correlations were found between TMB and age, neuro-invasion (p=0.125), and tumor location (p= 0.696). Patients with KRAS p.G12 mutations and FAT3 missense mutations were associated (p< 0.001) with TMB. TP53 mutations also influence TMB distribution (P<0.001). TMB is reversely related to EGFR mutations (P<0.001) but is not differed by mutation types. According to multivariate logistic regression model, genomic parameters can effectively construct model predicting TMB, which may be improved by introducing clinical information.
Conclusions
Our study demonstrates genomic together with clinical features yielded a better reliable model predicting TMB-high status. A simplified model consisting of less than 20 genes and couples of clinical parameters sought to be useful to provide TMB status with less cost and waiting time.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
D. Shao: Full/Part-time employment: BGI Genomics. All other authors have declared no conflicts of interest.
Resources from the same session
243P - Target sequencing of 508 genes in Chinese epithelial ovarian cancer patients
Presenter: Li Lei
Session: e-Poster Display Session
244P - Optimization of early diagnostics of cervical intraepitelial neoplasies and cervical cancer
Presenter: Zakhirova Nargiza
Session: e-Poster Display Session
245P - Clinicopathological features including response to platinum-based chemotherapy in endometrial carcinomas involving SWI/SNF complex inactivation.
Presenter: Izumi Tanimoto
Session: e-Poster Display Session
246P - Impact of genetically predicted elevated concentrations of C-reactive protein on ovarian cancer risk: A Mendelian randomization study
Presenter: Haoxin Peng
Session: e-Poster Display Session
247P - The role of p53 gene suppressor and bcl-2 oncoprotein in non-epithelial ovarian tumor prognosis determination among child and adolescent patients
Presenter: Anvar Shukullaev
Session: e-Poster Display Session
248P - The effect of progesterone on ALA-based PDT efficacy in uterine sarcoma cells
Presenter: Ellie Chu
Session: e-Poster Display Session
249P - A Retrospective Study on the Treatment Response of Locally Advanced Cervical Cancer Patients to Combination Chemoradiotherapy
Presenter: Siti Nabihah Sahralidin
Session: e-Poster Display Session
250P - Health-related Quality of Life in Women with Cervical Cancer
Presenter: Almagul Zhabagina
Session: e-Poster Display Session
251P - Tendency of morbidity and mortality in cervical cancer in the last 10 years in the Republic of Uzbekistan
Presenter: Mirzagaleb Tillyashaykhov
Session: e-Poster Display Session
252P - Secondary data analysis of newly diagnosed advanced ovarian cancer in South Korea
Presenter: Soo Young Jeong
Session: e-Poster Display Session