Abstract 286P
Background
Recurrent tumors on MRI described as intermediate T2 signal intensity and ADC quantitative values derived from diffusion sequences are prone to discrepancy. In post surgical setting of oral cavity ADC values are prone to artifacts limiting its utility. This investigation aims to build a decision model using quantitative robust parameters derived from MR imaging.
Methods
Four lesion quantitative parameters ( quantitative T2 lesion signal, T2 lesion/muscle signal ratio, T2 lesion /Tongue signal ratio and ADC values) were assessed in 68 lesions (54 malignant,14 benign). Classification analysis was performed using L1 regularization of features in a Logistic regression, Statistical feature selection methods like ANOVA f-value and chi square and lastly a Entropy based feature selection using decision tree. Results include the probability for malignancy for every descriptor combination in the classification tree. Area under the curve (AUC) used as the statistical parameters to find model efficiency was calculated using software "R".
Results
Logistic regression based classifier could predict the probability of cancer based on T2 based features alone. ADC was not found helpful in predicting the disease. Both scores obtained from ANOVA and Chi-square have a different assumptions about distributions of input feature values and output probabilities, but yielded different scores. Both methods point to T2 as most significant in predicting output probabilities of cancer. Lastly, the decision tree showed T2 based features in addition to ADC provide maximum diagnostic value in determining cancer in patients. The area under the curve of the ROC was .940 for additive T2 and ADC and only 0.74 for ADC values alone. The signal ratios (T2 lesion/muscle signal ratio and T2 lesion /Tongue signal ratio) have an AUC 0.96.
Conclusions
Though each method of feature selection has certain shortfalls due to the assumptions but results demonstrate T2 feature outranking all others, indicating its high predictive power in determining the probability of disease. It is therefore possible to train predictive robust models based on T2 quantitative features with high level of accuracy and precision.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
61P - Clinical implication of BRCA mutation in breast cancer with central nervous system metastasis
Presenter: Jwa Hoon Kim
Session: e-Poster Display Session
62P - IGF axis in breast cancer recurrence and metastasis
Presenter: Hajara Akhter
Session: e-Poster Display Session
63P - Butterfly pea (<italic>Clitoria ternatea</italic> Linn.) flower extract prevents MCF-7 HER2-positive breast cancer cell metastasis in-vitro
Presenter: Azzahra Asysyifa
Session: e-Poster Display Session
64P - Pre-treatment absolute white blood cell profile count as metastatic predictive factors in invasive ductal carcinoma breast cancer
Presenter: Wikania I Gede
Session: e-Poster Display Session
65P - The new mouse anti-nNav1.5 monoclonal antibody
Presenter: Nur Aishah Sharudin
Session: e-Poster Display Session
66P - The TILs near solid structures is a potential prognostic factor of distant metastases in the luminal HER2-negative breast cancer
Presenter: Vladimir Alifanov
Session: e-Poster Display Session
73P - Selinexor in combination with carboplatin and pemetrexed (CP) in patients with advanced or metastatic solid tumors: Results of an open label, single-center, multi-arm phase Ib study
Presenter: Kyaw Thein
Session: e-Poster Display Session
74P - Comprehensive transcriptome analysis of endoplasmic reticulum stress in osteosarcomas
Presenter: Yoshiyuki Suehara
Session: e-Poster Display Session
75P - The evaluation of selective sensitivity of EZH2 inhibitors based on synthetic lethality in ARID1A-deficient gastric cancer
Presenter: Leo Yamada
Session: e-Poster Display Session
76P - Targeted tumour photoImmunotherapy against triple-negative breast cancer therapy
Presenter: Vivek Raju
Session: e-Poster Display Session