Abstract 307P
Background
The incident rate of thyroid nodules has risen globally, thus it is critical to identify malignancy among benign lesions. Currently available molecular diagnostics for malignant nodules have not achieved the desired degree of accuracy. We aimed to identify DNA methylation markers to accurately classify benign and malignant nodules, and to develop tools for non-invasive screening of thyroid cancer.
Methods
Marker screening was performed on papillary thyroid cancer (PTC, 37 tissues, 55 plasmas), benign nodules (BTN, 37 tissues, 55 plasmas) and normal samples (20 buffy coats; 123 plasmas) by MONOD+ assay. We identified differential markers by Wilcox rank sum test using Benjamini-Hochberg procedure to control false discovery rate. Predication models were built using machine-learning algorithms including random forest and support vector machine. They were validated using public DNA methylation data of thyroid tissues. Candidate markers were developed into a targeted sequencing panel and were validated on plasma DNA samples (115 PTC, 102 BTN). Best-performing markers were developed into an improved panel to classify additional plasma DNA samples of malignant or benign thyroid nodules.
Results
From the MONOD+ data we identified over 1000 DNA methylation markers significantly differential between malignant and benign nodules. We built a classification model by random forest method, which classified DNA methylation profiles of thyroid nodules at a sensitivity of 90.5% and a specificity of 91.9% (95% CI, 0.91-1.0). We produced a targeted sequencing panel using those markers and sequenced plasma DNA of PTC and benign nodules. Two thirds of them were used as a training cohort to build a prediction model, which classified the remaining samples at an accuracy of 72%. We selected the best-performing markers to build an advanced version of panel, which classified additional over 500 plasma DNA samples of thyroid nodules with increased sequencing depth to improve the accuracy and consistency in classification.
Conclusions
Our study demonstrates that DNA methylation markers can robustly differentiate thyroid nodules based on their malignancy. They are thus promising candidates to develop non-invasive diagnostics for thyroid cancer screening.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The First Affiliated Hospital, Sun Yat-sen University.
Funding
The First Affiliated Hospital, Sun Yat-sen University.
Disclosure
Z. Su, Q. He: Shareholder/Stockholder/Stock options, Full/Part-time employment: Singlera Genomics. L. Cheng: Full/Part-time employment: Singlera Genomics. R. Liu: Leadership role, Shareholder/Stockholder/Stock options, Full/Part-time employment: Singlera Genomics. All other authors have declared no conflicts of interest.
Resources from the same session
243P - Target sequencing of 508 genes in Chinese epithelial ovarian cancer patients
Presenter: Li Lei
Session: e-Poster Display Session
244P - Optimization of early diagnostics of cervical intraepitelial neoplasies and cervical cancer
Presenter: Zakhirova Nargiza
Session: e-Poster Display Session
245P - Clinicopathological features including response to platinum-based chemotherapy in endometrial carcinomas involving SWI/SNF complex inactivation.
Presenter: Izumi Tanimoto
Session: e-Poster Display Session
246P - Impact of genetically predicted elevated concentrations of C-reactive protein on ovarian cancer risk: A Mendelian randomization study
Presenter: Haoxin Peng
Session: e-Poster Display Session
247P - The role of p53 gene suppressor and bcl-2 oncoprotein in non-epithelial ovarian tumor prognosis determination among child and adolescent patients
Presenter: Anvar Shukullaev
Session: e-Poster Display Session
248P - The effect of progesterone on ALA-based PDT efficacy in uterine sarcoma cells
Presenter: Ellie Chu
Session: e-Poster Display Session
249P - A Retrospective Study on the Treatment Response of Locally Advanced Cervical Cancer Patients to Combination Chemoradiotherapy
Presenter: Siti Nabihah Sahralidin
Session: e-Poster Display Session
250P - Health-related Quality of Life in Women with Cervical Cancer
Presenter: Almagul Zhabagina
Session: e-Poster Display Session
251P - Tendency of morbidity and mortality in cervical cancer in the last 10 years in the Republic of Uzbekistan
Presenter: Mirzagaleb Tillyashaykhov
Session: e-Poster Display Session
252P - Secondary data analysis of newly diagnosed advanced ovarian cancer in South Korea
Presenter: Soo Young Jeong
Session: e-Poster Display Session