Oops, you're using an old version of your browser so some of the features on this page may not be displaying properly.

MINIMAL Requirements: Google Chrome 24+Mozilla Firefox 20+Internet Explorer 11Opera 15–18Apple Safari 7SeaMonkey 2.15-2.23

e-Poster Display Session

15P - Designing of multimodal targeted tumor-seeking nanomedicine for triple-therapeutic effect

Date

22 Nov 2020

Session

e-Poster Display Session

Topics

Cytotoxic Therapy;  Targeted Therapy

Tumour Site

Presenters

Vellingiri Yasothamani

Citation

Annals of Oncology (2020) 31 (suppl_6): S1241-S1254. 10.1016/annonc/annonc351

Authors

V. Yasothamani1, V. Raju2

Author affiliations

  • 1 Department Of Zoology, Bharathiar University, 641046 - Coimbatore/IN
  • 2 Department Of Zoology, Bharathiar University, 641046 - COIMBATORE/IN

Resources

Login to get immediate access to this content.

If you do not have an ESMO account, please create one for free.

Abstract 15P

Background

Breast cancer is a major ongoing health problem among women in both developing and developed countries. Her2/neu positive is the subtype of breast cancer. We tested an integrated innovatively designed new tumour-seeking nanomedicine (TSN) for high therapeutics antitumor effect on advanced breast cancer that overexpressed the Her2/neu receptor.

Methods

Herein, we designed the special photodynamic molecule porphyrin combined with the anticancer drug doxorubicin (DOX), enabling it to target cancer biomarkers and measuring the singlet oxygen production with thermal heat to archive extraordinary selective PDT/PTT/Chemotherapy in vitro. The tumor-seeking nanomedicine (TSN) targets the triple therapeutic effect of breast cancer. Furthermore, in vivo phototherapy and chemotherapy using targeted nanoparticles in mice models were also done.

Results

Encouragingly, multimodal targeted TSN shows selective Her2/neu receptor-mediated response in breast cancer, incinerates the tumor treated under NIR irradiation triggering the porphyrin and DOX co-release and enhancing the distribution of DOX in nuclei; the released porphyrin molecules also function as multiphase that can efficiently convert NIR-light to heat inside tumor cells for PTT, and again NIR-light to singlet oxygen for PDT. Due to these unique properties, TSN had excellent antitumor effects under NIR irradiation. The excellent role of TSN based triple-targeted therapy produced the best anticancer response to trigger the tumor cell death and was effective to protect the mice from cancer relapse.

Conclusions

Conjugation of porphyrin and DOX for the evaluation of such complexes in phototherapy in Her2/neu target human cancer cells. This multi-model therapy approach will make it much more effective to overcome tumors than a single therapeutic approach. TSN exhibited high selectivity and efficient tumor inhibition in-vivo without affecting the normal tissues. Therefore the clinical translation of our TSN and the proposed way might be realistic and the integrated components of TSN have been approved by the US FDA for human clinical usage. Therefore, integrated TSN achieved unprecedented selectivity and shows highly versatile next-generation clinical translation for advanced nanomedicine against cancers.

Clinical trial identification

Editorial acknowledgement

Legal entity responsible for the study

The authors.

Funding

Has not received any funding.

Disclosure

All authors have declared no conflicts of interest.

This site uses cookies. Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used.

For more detailed information on the cookies we use, please check our Privacy Policy.

Customise settings
  • Necessary cookies enable core functionality. The website cannot function properly without these cookies, and you can only disable them by changing your browser preferences.