Abstract 364P
Background
Lung cancer treatment gets on the stage of precision medicine. Histopathological classification of lung cancer is crucial in determining optimum treatment. Artificial intelligence (AI) models have been widely shown to be useful in pathological diagnosis and we previously established a reliable AI model to detect the presence of lung cancer on whole slide images (WSIs). However, AI models for the differentiation of major histological types of lung cancer, such as adenocarcinoma (ADC), squamous cell carcinoma (SCC) and small-cell lung cancer (SCLC), are yet to be established.
Methods
We trained a convolution neural network (CNN) based on the EfficientNet-B1 architecture to classify ADC, SCC, SCLC, and non-neoplastic lesion from biopsy specimen WSIs (70, 23, 12 and 171 specimens with ADC, SCC, SCLC and non-neoplastic lesion, respectively) using a training dataset of 276 images of which 60 were reserved for validation. The WSIs were manually annotated by pathologists by drawing around the regions that contain each subtype. We used a transfer learning approach, in which the starting weights were obtained from a pre-trained model on ImageNet. The model was then trained on our dataset using a supervised learning approach. To classify a WSI, the model was applied in a sliding window fashion with an input tile size of 224x224 and a stride of 128 on a magnification of x10. The maximum probability was then used as a WSI diagnosis.
Results
We evaluated our model on a total of 533 WSIs that only had WSI diagnoses. The model achieved a Receiver Operator Curve Area Under the Curves of 0.888 (CI 0.872-0.9075), 0.8913 (CI 0.8596-0.9221), 0.9526 (CI 0.9276-0.9646) for ADC, SCC, and SCLC, respectively.
Conclusions
The obtained results on a large test set are a promising first step towards developing a model for the classification of lung cancer. Our model was only trained on a small dataset of 276 WSIs; however, we hope that the model would be further improved with the collection of additional annotated WSIs for training. Having a high performing model could help reduce the burden on pathologists and be useful for the decision of optimum treatment strategies, such as molecular-targeted therapy, immunotherapy and chemotherapy, according to the histological types of lung cancer.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
61P - Clinical implication of BRCA mutation in breast cancer with central nervous system metastasis
Presenter: Jwa Hoon Kim
Session: e-Poster Display Session
62P - IGF axis in breast cancer recurrence and metastasis
Presenter: Hajara Akhter
Session: e-Poster Display Session
63P - Butterfly pea (<italic>Clitoria ternatea</italic> Linn.) flower extract prevents MCF-7 HER2-positive breast cancer cell metastasis in-vitro
Presenter: Azzahra Asysyifa
Session: e-Poster Display Session
64P - Pre-treatment absolute white blood cell profile count as metastatic predictive factors in invasive ductal carcinoma breast cancer
Presenter: Wikania I Gede
Session: e-Poster Display Session
65P - The new mouse anti-nNav1.5 monoclonal antibody
Presenter: Nur Aishah Sharudin
Session: e-Poster Display Session
66P - The TILs near solid structures is a potential prognostic factor of distant metastases in the luminal HER2-negative breast cancer
Presenter: Vladimir Alifanov
Session: e-Poster Display Session
73P - Selinexor in combination with carboplatin and pemetrexed (CP) in patients with advanced or metastatic solid tumors: Results of an open label, single-center, multi-arm phase Ib study
Presenter: Kyaw Thein
Session: e-Poster Display Session
74P - Comprehensive transcriptome analysis of endoplasmic reticulum stress in osteosarcomas
Presenter: Yoshiyuki Suehara
Session: e-Poster Display Session
75P - The evaluation of selective sensitivity of EZH2 inhibitors based on synthetic lethality in ARID1A-deficient gastric cancer
Presenter: Leo Yamada
Session: e-Poster Display Session
76P - Targeted tumour photoImmunotherapy against triple-negative breast cancer therapy
Presenter: Vivek Raju
Session: e-Poster Display Session