Abstract 271P
Background
Histone modifications are important for tissue homeostasis, and their mutations are involved in carcinogenesis. Mutations in a histone modifier, UTX (also known as KDM6A), and loss of its counterpart UTY (also known as KDM6C) are common in prostate cancer (PCa). However, mechanisms of carcinoma development and drug sensitivity in UTX-deficient PCa are not clear. We hypothesized that elucidating the mechanism of carcinogenesis by loss of UTX may develop novel molecular targeted therapies for UTX-deficient PCa.
Methods
We generated genetically-engineered mice with deletion of both Utx and Uty in the prostate tissue (UtxΔ, UtyΔ) and crossed with mice with a heterozygous deletion of p53 (p53+/−) to create UtxΔ, UtyΔ and p53+/− compound mice. Mice were administered a high-fat diet (HFD) starting at 8 weeks of age to promote cancer growth by inflammation. We found the development of PCa with Gleason score (GS) = 3+3 at 4 months after HFD treatment. Isolated prostate tissues were subjected to pathologic, molecular, and cellular analyses. RM-2 mouse PCa cells which do not express UTY were knocked down for Utx (siUtx) and control (siNC) by siRNAs to assess changes in the abilities of proliferation and migration.
Results
RM-2 siUtx cells showed increased proliferation and migration abilities compared with RM-2 siNC cells. By performing high-throughput RNA sequencing (RNA seq) and gene set enrichment analysis (GSEA) using mouse prostate tissues, we found that loss of UTX inactivated a pathway for DNA damage repair such as ATM pathway. To confirm this, we irradiated Utx+, UtyΔ, p53+/− mice and UtxΔ, UtyΔ, p53+/− mice and found that the time required for DNA damage repair was prolonged in UtxΔ, UtyΔ, p53+/− mice compared with Utx+, UtyΔ, p53+/− mice by immunofluorescent staining with an antibody against γH2AX, a marker of DNA repair. We also found that olaparib inhibited proliferation with RM-2 siUtxcells compared with RM-2 siNC cells.
Conclusions
Inactivation of the DNA damage repair pathway was suggested as one of the oncogenic mechanisms of UTX-deficient PCa. Moreover, olaparib may be effective in the treatment of PCa with loss of UTX function. Since loss of UTX function has also been observed in other types cancers, our therapeutic strategy may apply for other UTX-deficient cancers.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
415P - Initial experience in a real-world Asian cohort with a circulating tumor DNA (ctDNA) mutation-based multi-cancer early detection (MCED) assay
Presenter: Steven Tucker
Session: Poster Display
Resources:
Abstract
416P - Three-dimensional bioprinting model of ovarian cancer for identification of patient-specific therapy response
Presenter: Jiangang Zhang
Session: Poster Display
Resources:
Abstract
417P - Early experience in using plasma-only multi-omic minimal residual disease testing in early-stage colorectal cancer patients from Asia and the Middle East
Presenter: Shaheenah Dawood
Session: Poster Display
Resources:
Abstract
418P - Decoding the intricate cellular makeup of immune-related adverse events using single-cell and spatial analysis
Presenter: Dmitrii Shek
Session: Poster Display
Resources:
Abstract
420P - Combinatory genomic and transcriptomic sequencing of Chinese KRAS mutant non-small cell lung cancer revealed molecular and inflammatory heterogeneity in tumor microenvironment
Presenter: Xuchao Zhang
Session: Poster Display
Resources:
Abstract
421P - Comprehensive genomic profiling (CGP) unravels somatic BRCA (sBRCA) and homologous recombinant repair (HRR) gene alterations across multi-cancer spectrum
Presenter: Ramya Kodandapani
Session: Poster Display
Resources:
Abstract
422P - CD8Teff distinguished tumor immunotyping heterogeneity and enables precision immunotherapy
Presenter: luhui Mao
Session: Poster Display
Resources:
Abstract
423P - Insights into clinically actionable biomarkers in an Indian cancer cohort of 1000 patients using comprehensive genomic profiling (CGP)
Presenter: Mithua Ghosh
Session: Poster Display
Resources:
Abstract
424P - MD Anderson Cancer Center global precision oncology decision support (Glo-PODS) clinical trial genomic support: Pilot program at the Prince of Wales Hospital (Chinese University of Hong Kong - CUHK)
Presenter: Brigette Ma
Session: Poster Display
Resources:
Abstract
425P - Engineered <italic>Lactococcus lactis</italic> as a personalized cancer vaccine platform induces antitumour immunity via membrane-inserted peptide for neoantigens
Presenter: Meng Zhu
Session: Poster Display
Resources:
Abstract