Abstract 226P
Background
Urothelial carcinoma (UC) has a highly complex genomic landscape. With the spread of immunotherapy, accurate stratification strategies are needed. As cancer tissues are now frequently screened for specific sets of mutations, a large number of samples has become available for analysis. Classification of patients with similar mutation profiles may help identifying subgroups of patients outcomes. However, classification based on somatic mutations is challenging due to the sparseness and heterogeneity of the data.
Methods
A retrospective study was performed to identify the prognosis-related somatic mutations from 192 UC in The Cancer Genome Atlas (TCGA) database. Cox regression were performed to screen out prognostic genes.
Results
A total of 176 genes were related with immuno-survival. Then, a stepwise multivariate Cox regression analysis was performed, and 14 gene were selected to establish a predictive model. Compared with the wildtype group, the patients with mutated signature had unfavorable to prognosis (p<0.001). ROC curve analysis demonstrated the predictive ability for 1-, 3-, 5-, and 10-year OS, with areas under the curve (AUCs) of 0.7684, 0.667,0.619 and 0.647, respectively. In mutated signature cohorts, the five most frequently mutated genes were TP53 (50%), KMT2D (43%), LRP1B (33%), PER1 (33%), and RNF213 (33%). Dissimilarly, the five most frequently mutated genes were TP53 58%), ARID1A (29%), KMT2D (29%), RNF213 (27%), and KDM6A (26%) in wildtype cohorts, which may imply that different characteristic states have different molecular mechanisms.
Conclusions
These data underline the potential value of using somatic mutations to accurately stratify UC patients into clinically actionable subgroups. This model could reduce overtreatment in UC patients with mutations.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
217P - Conditional reprogramming of urine-derived bladder cancer cells: A model for precision medicine
Presenter: Yu Dong
Session: Poster Display
Resources:
Abstract
218P - Clinical effectiveness of tislelizumab combined with gemcitabine/cisplatin (GC) versus GC as adjuvant therapy in high-risk muscle-invasive urothelial carcinoma (MIUC): A real-world study
Presenter: xingliang Tan
Session: Poster Display
Resources:
Abstract
219P - Clinical effectiveness of tislelizumab plus TKI as first-line therapy in patients with metastatic renal cell carcinoma (mRCC): A real-world study
Presenter: Pei Dong
Session: Poster Display
Resources:
Abstract
220P - Heterogeneity in tertiary lymphoid structures predicts distinct prognosis and immune microenvironment characterizations of clear cell renal cell carcinoma
Presenter: Wenhao Xu
Session: Poster Display
Resources:
Abstract
221P - Genetic polymorphism of genes encoding cytokines interleukin1 1-alpha and TNF-alpha in non-muscle invasive bladder cancer
Presenter: Anil Kumar
Session: Poster Display
Resources:
Abstract
222P - The association between response to enfortumab vedotin and peripheral neuropathy: A multicenter retrospective study in Japan
Presenter: Nozomi Hayakawa
Session: Poster Display
Resources:
Abstract
223P - Patient and healthcare practitioner preferences for treatments in advanced renal cell carcinoma
Presenter: Niara Oliveira
Session: Poster Display
Resources:
Abstract
224P - WUTSUP-01: Phase II trial of neoadjuvant toripalimab and chemotherapy in locally advanced upper tract urothelial carcinoma
Presenter: Yige Bao
Session: Poster Display
Resources:
Abstract
225P - A novel multianalyte signature for stratifying Indian non-muscle invasive bladder cancer: A single center observational study
Presenter: Hari P S
Session: Poster Display
Resources:
Abstract
227P - Proteomic analysis of urothelial lesions reveals novel diagnostic biomarkers to distinguish pathologic pitfalls and protein-protein interactions
Presenter: Changlim Hyun
Session: Poster Display
Resources:
Abstract