Abstract 43P
Background
Breast cancer remains a significant concern worldwide. Risk-based screening, which tailors screening recommendations to individual risk levels, has been shown to enhance patient stratification. However, most research on model development focuses on Western populations, leaving the predictive accuracy of these models for Southeast Asian populations largely uncharacterized.
Methods
We conducted an observational case-control study comprising 305 Indonesian women to assess the applicability of published risk models to the local population. We employed a combined risk model to classify patients as either elevated or average risk. Our combined model evaluates two separate risk factors: genetic risk, assessed using ancestry-adjusted PRS scores based on the Mavaddat model, and clinical risk, evaluated using the Gail model. The performance of each individual model and their combined effectiveness were analyzed using the Area Under the Curve (AUC) and Odds Ratio (OR).
Results
Individual risk models retained their predictive efficacy in the Indonesian context. Specifically, the AUC achieved for genetic risk is AUC of 0.674 (p = 1.28 x 10-3; Risk group: OR = 3.16; p = 2.5 x 10-1). For clinical risk, the AUC stands at 0.674 (p = 5.16 x 10-4; Risk group: OR = 7.636; p = 6.1 x 10-3). Remarkably, when combined, the AUC increased to 0.701 (Risk group: OR= 3.897; p = 4.28 x 10-2), signifying the benefits of a multi-factor model. Based on a subset of the samples taken from this study, the Nala Breast Cancer Risk genetic risk algorithm generated higher AUC when compared to a leading third-party software that uses the same PRS model for breast cancer (0.63 vs 0.55). This improvement is primarily due to our method of translating PRS scores into categorical outcomes, which integrates localized disease incidence and mortality rates.
Conclusions
Our findings demonstrate for the first time the applicability of the Polygenic Risk Score using Mavaddat model and clinical score using Gail model to Indonesian populations. In addition, our study shows that, within this demographic, combined risk models provide a superior predictive framework compared to single-factor approaches.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
NalaGenetics.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
298P - Managing locally advanced cervical cancer: Insights from a tertiary care center and a 3-year follow-up on outcomes
Presenter: Ambedkar Yadala
Session: Poster Display
Resources:
Abstract
299P - Sexual dysfunction assessment in longterm survivors of carcinoma cervix using LENT SOMA scale
Presenter: Niharika Sethi
Session: Poster Display
Resources:
Abstract
300P - Assessing ovarian function in Vietnamese cervical cancer patients who underwent ovary transposition prior to pelvic radiation therapy
Presenter: Cuong Nguyen
Session: Poster Display
Resources:
Abstract
301P - Correlation between cervical cancer recurrence after radiation therapy and vaginal microbiome
Presenter: Xiaoxian Xu
Session: Poster Display
Resources:
Abstract
302P - Expression of ERCC4 gene and its correlation with clinical and pathological parameters in cervical cancer
Presenter: Himanshu Mishra
Session: Poster Display
Resources:
Abstract
303P - Prognostic value of body composition and systemic inflammatory markers in patients with locally advanced cervical cancer following chemoradiotherapy
Presenter: Hui Guo
Session: Poster Display
Resources:
Abstract
305P - A real-world multicenter cohort study of lenvatinib (LEN) plus pembrolizumab (PEM) in Japanese patients with endometrial cancer: Interim analysis of GOGO-EM4 study
Presenter: Yoshikazu Nagase
Session: Poster Display
Resources:
Abstract
306P - Adjuvant treatment and impact on relapse in stage IA uterine papillary serous and clear cell carcinomas: A single center retrospective study
Presenter: Sachin Khurana
Session: Poster Display
Resources:
Abstract
307P - Hormonal therapy vs combination chemotherapy in metastatic leiomyosarcomas: A systematic review
Presenter: Patricia Angel
Session: Poster Display
Resources:
Abstract
309P - Expression of estrogen receptor is a negative predictive biomarker for immunotherapy with lenvatinib plus pembrolizumab for advanced endometrial cancer with pMMR
Presenter: Hiroyuki Fujii
Session: Poster Display
Resources:
Abstract