Abstract 43P
Background
Breast cancer remains a significant concern worldwide. Risk-based screening, which tailors screening recommendations to individual risk levels, has been shown to enhance patient stratification. However, most research on model development focuses on Western populations, leaving the predictive accuracy of these models for Southeast Asian populations largely uncharacterized.
Methods
We conducted an observational case-control study comprising 305 Indonesian women to assess the applicability of published risk models to the local population. We employed a combined risk model to classify patients as either elevated or average risk. Our combined model evaluates two separate risk factors: genetic risk, assessed using ancestry-adjusted PRS scores based on the Mavaddat model, and clinical risk, evaluated using the Gail model. The performance of each individual model and their combined effectiveness were analyzed using the Area Under the Curve (AUC) and Odds Ratio (OR).
Results
Individual risk models retained their predictive efficacy in the Indonesian context. Specifically, the AUC achieved for genetic risk is AUC of 0.674 (p = 1.28 x 10-3; Risk group: OR = 3.16; p = 2.5 x 10-1). For clinical risk, the AUC stands at 0.674 (p = 5.16 x 10-4; Risk group: OR = 7.636; p = 6.1 x 10-3). Remarkably, when combined, the AUC increased to 0.701 (Risk group: OR= 3.897; p = 4.28 x 10-2), signifying the benefits of a multi-factor model. Based on a subset of the samples taken from this study, the Nala Breast Cancer Risk genetic risk algorithm generated higher AUC when compared to a leading third-party software that uses the same PRS model for breast cancer (0.63 vs 0.55). This improvement is primarily due to our method of translating PRS scores into categorical outcomes, which integrates localized disease incidence and mortality rates.
Conclusions
Our findings demonstrate for the first time the applicability of the Polygenic Risk Score using Mavaddat model and clinical score using Gail model to Indonesian populations. In addition, our study shows that, within this demographic, combined risk models provide a superior predictive framework compared to single-factor approaches.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
NalaGenetics.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
218P - Clinical effectiveness of tislelizumab combined with gemcitabine/cisplatin (GC) versus GC as adjuvant therapy in high-risk muscle-invasive urothelial carcinoma (MIUC): A real-world study
Presenter: xingliang Tan
Session: Poster Display
Resources:
Abstract
219P - Clinical effectiveness of tislelizumab plus TKI as first-line therapy in patients with metastatic renal cell carcinoma (mRCC): A real-world study
Presenter: Pei Dong
Session: Poster Display
Resources:
Abstract
220P - Heterogeneity in tertiary lymphoid structures predicts distinct prognosis and immune microenvironment characterizations of clear cell renal cell carcinoma
Presenter: Wenhao Xu
Session: Poster Display
Resources:
Abstract
221P - Genetic polymorphism of genes encoding cytokines interleukin1 1-alpha and TNF-alpha in non-muscle invasive bladder cancer
Presenter: Anil Kumar
Session: Poster Display
Resources:
Abstract
222P - The association between response to enfortumab vedotin and peripheral neuropathy: A multicenter retrospective study in Japan
Presenter: Nozomi Hayakawa
Session: Poster Display
Resources:
Abstract
223P - Patient and healthcare practitioner preferences for treatments in advanced renal cell carcinoma
Presenter: Niara Oliveira
Session: Poster Display
Resources:
Abstract
224P - WUTSUP-01: Phase II trial of neoadjuvant toripalimab and chemotherapy in locally advanced upper tract urothelial carcinoma
Presenter: Yige Bao
Session: Poster Display
Resources:
Abstract
225P - A novel multianalyte signature for stratifying Indian non-muscle invasive bladder cancer: A single center observational study
Presenter: Hari P S
Session: Poster Display
Resources:
Abstract
226P - Prognosis stratification of immunotherapy by a mutational signature in urothelial carcinoma
Presenter: Xuebing Han
Session: Poster Display
Resources:
Abstract
227P - Proteomic analysis of urothelial lesions reveals novel diagnostic biomarkers to distinguish pathologic pitfalls and protein-protein interactions
Presenter: Changlim Hyun
Session: Poster Display
Resources:
Abstract