Abstract 11P
Background
Breast cancer is the second leading cause of cancer deaths in women worldwide. Early detection of breast cancer has been demonstrated to improve patients' treatment outcomes and survival. Liquid biopsy based on detecting DNA shed by breast tumors into the circulation, known as circulating tumor DNA (ctDNA), has emerged as a promising non-invasive approach. However, differentiating benign breast lumps from malignant tumors remains a challenge in current clinical practice, and inaccurate detection may result in unnecessary invasive procedures.
Methods
To address this challenge, we employed a multimodal analysis approach, namely SPOT-MAS (Screen for the Presence of Tumor by DNA Methylation and Size) to profile alterations in methylation and fragment length patterns of cell free DNA (cfDNA) from 133 breast cancer patients and 59 patients with benign breast lumps comprising cysts and fibroadenomas.
Results
We identified multiple distinct end motifs, differential methylation and fragment length patterns across 22 chromosomes, which were further exploited as input features to build machine learning models to discriminate early-stage breast cancer patients from patients with benign lesions. The models achieved an area under the curve of 0.87 (95% CI: 0.79 – 0.94) and a sensitivity of 64.1% at 90% specificity in detecting patients with malignant tumors.
Conclusions
Therefore, our findings demonstrated that cancer-specific methylation and fragmentomic patterns in plasma cfDNA could serve as novel biomarkers for accurately differentiating malignant breast cancer patients from those with benign lesions.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Medical Genetics Institute and Gene Solutions Joint Stock Company, Vietnam.
Funding
Gene Solutions Joint Stock Company.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
415P - Initial experience in a real-world Asian cohort with a circulating tumor DNA (ctDNA) mutation-based multi-cancer early detection (MCED) assay
Presenter: Steven Tucker
Session: Poster Display
Resources:
Abstract
416P - Three-dimensional bioprinting model of ovarian cancer for identification of patient-specific therapy response
Presenter: Jiangang Zhang
Session: Poster Display
Resources:
Abstract
417P - Early experience in using plasma-only multi-omic minimal residual disease testing in early-stage colorectal cancer patients from Asia and the Middle East
Presenter: Shaheenah Dawood
Session: Poster Display
Resources:
Abstract
418P - Decoding the intricate cellular makeup of immune-related adverse events using single-cell and spatial analysis
Presenter: Dmitrii Shek
Session: Poster Display
Resources:
Abstract
420P - Combinatory genomic and transcriptomic sequencing of Chinese KRAS mutant non-small cell lung cancer revealed molecular and inflammatory heterogeneity in tumor microenvironment
Presenter: Xuchao Zhang
Session: Poster Display
Resources:
Abstract
421P - Comprehensive genomic profiling (CGP) unravels somatic BRCA (sBRCA) and homologous recombinant repair (HRR) gene alterations across multi-cancer spectrum
Presenter: Ramya Kodandapani
Session: Poster Display
Resources:
Abstract
422P - CD8Teff distinguished tumor immunotyping heterogeneity and enables precision immunotherapy
Presenter: luhui Mao
Session: Poster Display
Resources:
Abstract
423P - Insights into clinically actionable biomarkers in an Indian cancer cohort of 1000 patients using comprehensive genomic profiling (CGP)
Presenter: Mithua Ghosh
Session: Poster Display
Resources:
Abstract
424P - MD Anderson Cancer Center global precision oncology decision support (Glo-PODS) clinical trial genomic support: Pilot program at the Prince of Wales Hospital (Chinese University of Hong Kong - CUHK)
Presenter: Brigette Ma
Session: Poster Display
Resources:
Abstract
425P - Engineered <italic>Lactococcus lactis</italic> as a personalized cancer vaccine platform induces antitumour immunity via membrane-inserted peptide for neoantigens
Presenter: Meng Zhu
Session: Poster Display
Resources:
Abstract