Abstract 204P
Background
Although neoadjuvant chemoradiotherapy followed by surgery is the standard treatment for esophageal cancer patients, most patients are unable to achieve pathological complete response with neoadjuvant therapy, resulting in poor outcomes. The aim of this study is to develop a method for selecting patients who can achieve pathological complete response through pre-neoadjuvant therapy chest-enhanced CT scans.
Methods
Two hundreds and one patients with esophageal cancer were enrolled and divided into a training set and a testing set in a 7:3 ratio. Radiomics features of intra-tumoral and peritumoral images were extracted from preoperative chest-enhanced CT scans of these patients. The features were dimensionally reduced in two steps. The selected intra-tumoral and peritumoral features, including marginal (with a distance of 0-3mm from the tumor) and adjacent (with a distance of 3-6mm from the tumor) ROI, were used to build models with four machine learning classifiers, including Support Vector Machine, XG-Boost, Random Forest and Naive Bayes. Models with satisfied accuracy and stability levels were considered to perform well. Finally, the performance of these well-performing models on the testing set was displayed using ROC curves.
Results
Among the 16 models, the best-performing models were the integrated (intra-tumoral and peritumoral features)-XGBoost and integrated-random forest models, which had average ROC AUCs of 0.906 and 0.918, respectively, with relative standard deviations (RSDs) of 6.26 and 6.89 in the training set. In the testing set, the AUCs were 0.845 and 0.871, respectively. There was no significant difference in the ROC curves between the two models. Table: 204P
The performance of the selected models on the testing set
Model | AUC (95% CI) | Specificity | Sensitivity |
Integrated-XGBoost | 0.845 (0.764, 0.928) | 0.864 | 0.777 |
Original-XGBoost | 0.759 (0.660, 0.857) | 0.900 | 0.592 |
Integrated-Random Forest | 0.871 (0.796, 0.946) | 0.682 | 0.933 |
Original-Random Forest | 0.795 (0.703, 0.887) | 0.825 | 0.673 |
Adjacent-Random Forest | 0.769 (0.671, 0.868) | 0.886 | 0.533 |
Integrated-Support Vector Machine | 0.719 (0.613, 0.825) | 0.795 | 0.622 |
Conclusions
The addition of peritumoral radiomics features to the radiomics analysis may improve the predictive performance of pathological response for esophageal cancer patients to neoadjuvant chemoradiotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
62P - Combination of chemotherapy with endocrinal therapy as upfront treatment of metastatic breast cancer in hormone receptor- positive, HER2 -negative disease: A phase II randomised clinical trial
Presenter: Mariam Saleh
Session: Poster Display
Resources:
Abstract
63P - Efficacy and safety of eribulin plus carboplatin combination for HER2-negative metastatic breast cancer
Presenter: Mengqian Ni
Session: Poster Display
Resources:
Abstract
64P - Unmet needs following metastatic breast cancer in a middle-income Asian country
Presenter: Nirmala Bhoo-Pathy
Session: Poster Display
Resources:
Abstract
66P - Utidelone-based therapy in metastatic solid tumors after failure of standard therapies: A prospective, multicenter, single-arm trial
Presenter: Jianjun Zhang
Session: Poster Display
Resources:
Abstract
67P - Efficacy and safety of trastuzumab biosimilar in HER2+ve metastatic breast cancer: A multicenter phase III study
Presenter: krishna Mohan
Session: Poster Display
Resources:
Abstract
68P - Neratinib in combination with fulvestrant and or palbociclib can overcome endocrine resistance in HER2-low/ ER+ breast cancer
Presenter: Maryam Arshad
Session: Poster Display
Resources:
Abstract
69P - A multicenter, retrospective, real-world study of inetetamab combined with pyrotinib and vinorelbine as treatment for HER2-positive metastatic breast cancer
Presenter: Nan Jin
Session: Poster Display
Resources:
Abstract
70P - Overall survival of eribulin, trastuzumab, and pertuzumab as first-line therapy for patients with HER2-positive metastatic breast cancer: A phase II, single-arm clinical trial
Presenter: Kenichi Inoue
Session: Poster Display
Resources:
Abstract
71P - Efficacy and safety of disitamab vedotin after trastuzumab for HER2 -positive breast cancer: A real-world data of retrospective study
Presenter: Chao Li
Session: Poster Display
Resources:
Abstract
72P - Real-world data on the efficacy of T-DM1 biosimilar for the treatment of HER2-positive metastatic breast cancer patients: Outcomes from a single center retrospective study in India
Presenter: Kaushal Patel
Session: Poster Display
Resources:
Abstract