Abstract 388P
Background
More and more evidences suggest that circulating tumor cells (CTC) may be a good biomarker, not only as a prognostic indicator for tumors, but also for monitoring therapeutic effect and recurrence. However, the detection of CTC usually requires the final artificial judgment. This requires experienced pathologists and increases their workload. The application of machine learning in medical image recognition can effectively improve the level of automation and reduce the workload. So we hope to use machine learning to identify CTCs.
Methods
First, the python's openCV software package is used to segment the images of CTCs by image denoising, image filtering, edge detection, image expansion and contraction techniques. Secondly, the segmented cell images as a training set are trained using the CNN deep learning network. The CNN deep learning network includes input layer, intermediate hidden layer, and output layer. The middle hidden layer contains three layers, namely layer1, layer2 and lager3. Each intermediate hidden layer further includes convolution layer, excitation layer, and pooling layer. After the input layer, the cell images first enter the first intermediate hidden layer. The convolution layer of the first intermediate hidden layer is composed of 32 5x5 convolution kernels, which are then output to the pooling layer for dimension reduction through the ReLU excitation layer. After dimension reduction, the data is output from the first hidden layer to complete an entire feature extraction process. Then, through the second and third intermediate hidden layers in sequence, all feature extraction is completed. Finally, it enters the output layer and output the result, ie, CTCs or non-CTCs.
Results
We took 2920 cells from 732 patients for training and testing. Among them, 2000 cells were used as training set and 920 cells were used as testing set. The sensitivity and specificity of recognition reached 86.1% and 84.5%, respectively.
Conclusions
To identify CTC by machine learning can reach high sensitivity and specificity. We are further revising our methods of deep learning to achieve greater recognition effect.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
74TiP - Phase I study of BI 836880, a VEGF/Ang2-blocking nanobody®, as monotherapy and in combination with BI 754091, an anti-PD-1 antibody, in Japanese patients (pts) with advanced solid tumours
Presenter: Kentaro Yamazaki
Session: Poster display session
Resources:
Abstract
75P - A parallel deep learning network framework for whole-body bone scan image analysis
Presenter: Xiaorong Pu
Session: Poster display session
Resources:
Abstract
76P - Perception and satisfaction of cancer patients in clinical trials
Presenter: Jukyung Jeon
Session: Poster display session
Resources:
Abstract
77P - A prognostic nomogram for the prediction of neuroblastoma
Presenter: Jian-Guo Zhou
Session: Poster display session
Resources:
Abstract
80P - The clinical usefulness of a new fat-dissociation method to detect lymph nodes from surgically resected specimen in colorectal cancer: Prospective randomized study
Presenter: Shiki Fujino
Session: Poster display session
Resources:
Abstract
81P - Concurrent or consolidation chemotherapy during radiation as neoadjuvant treatment for locally advanced rectal cancer: A propensity score analysis from two prospective study
Presenter: JianWei Zhang
Session: Poster display session
Resources:
Abstract
82P - Body mass index, tumour location, and colorectal cancer survival
Presenter: Dake Chu
Session: Poster display session
Resources:
Abstract
83P - Helicobacter bilis may play a role in the carcinogenesis of colitis associated colon cancer correlating to increased number of CD4+CD45RB+ T cells
Presenter: Xiangsheng Fu
Session: Poster display session
Resources:
Abstract
84P - Comprehensive evaluation of relapse risk (CERR) score for colorectal liver metastases development and validation
Presenter: Jianmin Xu
Session: Poster display session
Resources:
Abstract
85P - Which is the best partner for capecitabine-based neoadjuvant chemoradiotherapy in locally advanced rectal cancer? A retrospective analysis of a comprehensive cancer center
Presenter: Jingwen Wang
Session: Poster display session
Resources:
Abstract