Abstract 174P
Background
Application of computer and artificial intelligence (AI) has made revolutionary progress in medical fields. Computer-assisted diagnosis (CAD) on pathology is successful in diagnosis, classification, staging and predicting prognosis of cancer.
Methods
In this work, we used the technique of convolutional neural networks (CNN) for training of morphological images of gastric cancer, which is a promising application of artificial intelligence technique for medical image analysis, especially for cancer pathology.
Results
We introduced successful works of AI-aided gastric cancer analysis for over 300 cases. AI-assisted pathology technique could help the pathologist in detecting and locating the abnormal area in images and to diagnose and classify benign or malignant tissues. Therefore, AI exactly improves the diagnostic status of gastric cancer, such as in interpretation of medical images and classification between benign and cancerous tissues. The complete workflow of AI diagnosis for gastric cancer is under construction. AI is more useful in releasing pathologists from repeated work, and improving efficiency.
Conclusions
In conclusions, there are still notable technical obstacles before this approach can be used to improve conventional clinical practice. Higher performance needs corrected marking images by experienced pathologist and require ‘training’ algorithms on tremendous data. We stressed the importance of proper algorithms for improving confidence of analytic results that is close to human experts. Additionally, we indicated the gaps in current research and principal resolutions for advancing the field.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors without further recourse to the authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
249P - Accuracy of endometrial biopsy by Pipelle: A systematic review and meta-analysis
Presenter: Jinhai Gou
Session: Poster display session
Resources:
Abstract
250P - Non-endometrioid endometrial cancer: Analysis of different adjuvant treatment modalities
Presenter: Gonçalo Nogueira da Costa
Session: Poster display session
Resources:
Abstract
251P - A prognostic index model for predicting long-term recurrence of uterine leiomyoma after initial myomectomy in women aged 18-44 years
Presenter: Xiu Ming
Session: Poster display session
Resources:
Abstract
252P - Uterine sarcomas in Qatar: Clinico-pathological characteristics and treatment outcome
Presenter: Ashraf Fadlelseid
Session: Poster display session
Resources:
Abstract
253P - Anti-PD-1-induced reinvigoration of tumour-infiltrating CD8+ T cells in epithelial ovarian cancer patients is correlated with T cell factor-1
Presenter: Junsik Park
Session: Poster display session
Resources:
Abstract
254P - Cyclin E1 is a shared biomarker of subsets of high grade serous ovarian cancer (HGSOC) and basal like breast cancer (BLBC)
Presenter: Diar Aziz
Session: Poster display session
Resources:
Abstract
255P - MEX3A is a prognostic biomarker and correlates with RNA splicing and cell proliferation in endometrial cancer by analysis of RNA-seq data
Presenter: Huining Jing
Session: Poster display session
Resources:
Abstract
256P - Lnc-AL445665.1-4 may be involved in the development of multiple uterine leiomyoma through interacting with miR-146b-5p
Presenter: E Yang
Session: Poster display session
Resources:
Abstract
257P - Treatment results of low risk gestational trophoblastic neoplasia (GTN) from a tertiary hospital, Chennai, India
Presenter: Rakesh M. P
Session: Poster display session
Resources:
Abstract
258P - Assessment of sexual health in patients treated for ovarian cancer
Presenter: Renu Madan
Session: Poster display session
Resources:
Abstract