Abstract 463P
Background
T factor depends on consolidation diameter in lung adenocarcinoma. Adenocarcinoma with short consolidation diameter could be indicated for sublobar resection. However, measurement of consolidation diameter under lung window in 2D-CT could be problematic, as the outline is not clear. We evaluated the relationship between consolidation lesion under mediastinal window in 3D-CT and pathological invasiveness, and aimed to predict invasiveness using machine learning algorithm.
Methods
Ninety-five patients who underwent surgical resection of lung adenocarcinoma that is less than 20 mm in diameter and has consolidation were analyzed retrospectively, in our Hospital from 2010 to 2016. The total tumor diameter and the volume and diameter of consolidation were analyzed using thin-slice CT and 3D-CT. Preoperative FDG-PET and serum CEA were also measured. Preinvasive lesion and minimally invasive adenocarcinoma were classified as pathologically non-invasive group, and invasive adenocarcinoma was classified as pathologically invasive group. The statistical differences were assessed by the Mann-Whitney U test or chi-square test. We used two machine learning algorithm. Three logistic regression (LR) models were trained based on sex, total tumor diameter, SUVmax, CEA, and (1) consolidation diameter (LR-Cd), (2) consolidation volume (LR-Cv), (3) consolidation diameter and volume (LD-Cd+Cv). Similarly, three random forest (RF) models were trained (RF-Cd, RF-Cv, RF-Cd+Cv). Patients were split into a training set (n = 76) and test set (n = 19). Model performance was measured area under the curve (AUC), and compared using receiver-operating characteristics curve analysis on the test set.
Results
Twenty-six non-invasive adenocarcinomas and 69 invasive adenocarcinomas were evaluated. The consolidation diameter and volume, and SUVmax of invasive group were significantly greater than those of non-invasive group (p < 0.001). On the test set, AUC of LR-Cd, RF-Cd, LR-Cv, RF-Cv, LR-Cd+Cv and RF-Cd+Cv were 0.687, 0.703,0.628, 0.744, 0.628 and 0.744 respectively.
Conclusions
The pathological invasiveness could be predicted by using machine learning algorithm. Especially, higher AUCs were obtained in RF-Cv and RF-Cd+Cv model.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
74TiP - Phase I study of BI 836880, a VEGF/Ang2-blocking nanobody®, as monotherapy and in combination with BI 754091, an anti-PD-1 antibody, in Japanese patients (pts) with advanced solid tumours
Presenter: Kentaro Yamazaki
Session: Poster display session
Resources:
Abstract
75P - A parallel deep learning network framework for whole-body bone scan image analysis
Presenter: Xiaorong Pu
Session: Poster display session
Resources:
Abstract
76P - Perception and satisfaction of cancer patients in clinical trials
Presenter: Jukyung Jeon
Session: Poster display session
Resources:
Abstract
77P - A prognostic nomogram for the prediction of neuroblastoma
Presenter: Jian-Guo Zhou
Session: Poster display session
Resources:
Abstract
80P - The clinical usefulness of a new fat-dissociation method to detect lymph nodes from surgically resected specimen in colorectal cancer: Prospective randomized study
Presenter: Shiki Fujino
Session: Poster display session
Resources:
Abstract
81P - Concurrent or consolidation chemotherapy during radiation as neoadjuvant treatment for locally advanced rectal cancer: A propensity score analysis from two prospective study
Presenter: JianWei Zhang
Session: Poster display session
Resources:
Abstract
82P - Body mass index, tumour location, and colorectal cancer survival
Presenter: Dake Chu
Session: Poster display session
Resources:
Abstract
83P - Helicobacter bilis may play a role in the carcinogenesis of colitis associated colon cancer correlating to increased number of CD4+CD45RB+ T cells
Presenter: Xiangsheng Fu
Session: Poster display session
Resources:
Abstract
84P - Comprehensive evaluation of relapse risk (CERR) score for colorectal liver metastases development and validation
Presenter: Jianmin Xu
Session: Poster display session
Resources:
Abstract
85P - Which is the best partner for capecitabine-based neoadjuvant chemoradiotherapy in locally advanced rectal cancer? A retrospective analysis of a comprehensive cancer center
Presenter: Jingwen Wang
Session: Poster display session
Resources:
Abstract