Abstract 141P
Background
DNA repair genes can be used as prognostic biomarkers in many types of cancer. We aimed to identify prognostic DNA repair genes in patients with gastric cancer (GC) by systematically bioinformatic approaches using web-based database.
Methods
Global gene expression profiles from altogether 1,325 GC patients’ samples from six independent datasets were included in the study. Clustering analysis was performed to screen potentially abnormal DNA repair genes related to the prognosis of GC, followed by unsupervised clustering analysis to identify molecular subtypes of GC. Characteristics and prognosis differences were analyzed among these molecular subtypes, and modular key genes in molecular subtypes were identified based on changes in expression correlation. Multivariate Cox proportional hazard analysis was used to find the independent prognostic gene. Kaplan-Meier method and log-rank test was used to estimate correlations of key DNA repair genes with GC patients’overall survival.
Results
There were 57 key genes significantly associated to GC patients’ prognosis, and patients were stratified into three molecular clusters based on their expression profiles, in which patients in Cluster 3 showed the best survival (P < 0.05). After a three-phase training, test and validation process, the expression profile of 13 independent key DNA repair genes were identified can classify the prognostic risk of patients. Compared with patients with low-risk score, patients with high risk score in the training set had shorter overall survival (P < 0.0001). Furthermore, we verified equivalent findings by these key DNA repair genes in the test set (P < 0.0001) and the independent validation set (P = 0.0024).
Conclusions
Our results suggest a great potential for the use of DNA repair gene profiling as a powerful marker in prognostication and inform treatment decisions for GC patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
This study was supported by the National Natural Science Foundation of China (81602081, 81602078).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
9P - XRCC1 Arg194Trp, Palb2 T1100T (3300T>G), HMMR V353A, TNF aG308A polymorphisms as diagnostic and prognostic markers of breast cancer in the Kyrgyz ethnic group
Presenter: Aigul Semetei kyzy
Session: Poster display session
Resources:
Abstract
232P - Early Results from the Phase I Study of SY-1365, a Potent and Selective CDK7 inhibitor, in Patients with Ovarian Cancer and Advanced Solid Tumors
Presenter: Debra Richardson
Session: Poster display session
Resources:
Abstract
382P - Drug metabolizing enzymes pharmacogenomic: Biomarkers for improved chemotherapy in head and neck cancer squamous cell carcinoma
Presenter: Sunishtha Bhatia
Session: Poster display session
Resources:
Abstract
401P - Women in oncology: Alarming figures from India
Presenter: Sharada Mailankody
Session: Poster display session
Resources:
Abstract
416P - Multidisciplinary management of sarcomas of the head and neck: An institutional experience
Presenter: Kavitha Jain
Session: Poster display session
Resources:
Abstract
523P - Co-morbilities and survival of patients initially diagnosed with extensive-stage small cell lung cancer: Impact of hypertension, diabetes and chronic hepatitis B viral infection
Presenter: Weigang Xiu
Session: Poster display session
Resources:
Abstract
529P - Osimertinib for patients with EGFR-mutant advanced NSCLC and asymptomatic brain metastases: An open-label, two-arm, phase II study
Presenter: Roni Gillis
Session: Poster display session
Resources:
Abstract