Abstract 2534
Background
Radiomic signatures offer the potential to enhance clinical decision-making as on-treatment markers of efficacy to assess which patients (pts) should continue treatment. Using treatment-related radiomic signatures via quantitative, artificial intelligence (AI)-based analysis of computed tomography (CT) images, we evaluated early tumor changes in pts with sqNSCLC treated in 2 treatment groups: nivolumab (group A) or docetaxel (group B).
Methods
Data from pts with sqNSCLC were collected prospectively and analyzed retrospectively across 2 multicenter clinical trials (A, n = 92 CheckMate 017 [NCT01642004], CheckMate 063 [NCT01721759]; B, n = 50 CheckMate 017). For the current study, pts with a measurable lung lesion and baseline and on-treatment assessments (8 weeks) were randomized to training (T) or validation (V) datasets (A: 72T, 20V; B: 32T, 18V;). For each pt, the largest measurable lung tumor was segmented to extract 1,749 radiomic features. Pts were classified as treatment-sensitive or -resistant using median progression-free survival (PFS) calculated from pts included in this study (A, B). Using AI-based methodologies, up to 4 features were selected and combined to develop a signature score (range, 0-1) in the T datasets and applied to each pt in the V datasets to classify sensitivity to treatment.
Results
The radiomics features associated with treatment sensitivity in the T datasets were a decrease in tumor volume (A, B), infiltration of tumor boundaries (A), or tumor spatial heterogeneity (A). The radiomic signatures predicted treatment sensitivity in the V dataset of each study group (AUC [95% CI]: A, 0.77 [0.55-1.00]; B, 0.67 [0.37-0.96]).
Conclusions
AI-based CT imaging detected early changes in radiomic features from baseline to first on-treatment tumor assessment—decrease in tumor volume, tumor heterogeneity, and tumor infiltrativeness along boundaries—that were associated with sensitivity to treatment in pts with sqNSCLC, offering an approach that could guide clinical decision-making to continue or modify systemic therapies.
Clinical trial identification
CheckMate 017 [NCT01642004] July 17, 2012 (first posted date) CheckMate 063 [NCT01721759] November 6, 2012 (first posted date).
Editorial acknowledgement
Legal entity responsible for the study
Bristol-Myers Squibb and Columbia University Medical Center.
Funding
Bristol-Myers Squibb.
Disclosure
M. Fronheiser: Shareholder / Stockholder / Stock options, Full / Part-time employment: Bristol-Myers Squibb. S. Du: Shareholder / Stockholder / Stock options, Full / Part-time employment: Bristol-Myers Squibb. W. Hayes: Shareholder / Stockholder / Stock options, Full / Part-time employment: Bristol-Myers Squibb. D.K. Leung: Shareholder / Stockholder / Stock options, Full / Part-time employment: Bristol-Myers Squibb. A. Roy: Shareholder / Stockholder / Stock options, Full / Part-time employment: Bristol-Myers Squibb. L.H. Schwartz: Research grant / Funding (self), Member DSMB: Merck; Research grant / Funding (self), Member DSMB: Novartis; Research grant / Funding (self), Consultant endpoint analysis: Boehringer Ingelheim. All other authors have declared no conflicts of interest.
Resources from the same session
5678 - Nanomaterials Augmented LDI-TOF-MS for Hepatocellular Carcinoma Diagnosis and Classification
Presenter: Jian Zhou
Session: Poster Display session 3
Resources:
Abstract
2436 - Development and Validation of an RNA-Seq Assay for Gene Fusions Detection in Formalin-Fixed Paraffin-Embedded Samples
Presenter: Hua Dong
Session: Poster Display session 3
Resources:
Abstract
5271 - A Pilot Study to Implement an Artificial Intelligence (AI) System for Gastrointestinal Cancer Clinical Trial Matching
Presenter: Zhaohui Jin
Session: Poster Display session 3
Resources:
Abstract
4787 - A Blinded Comparison of Patient Treatments to Therapeutic Options Presented by an Artificial Intelligence-based Clinical Decision-support system
Presenter: Suthida Suwanvecho
Session: Poster Display session 3
Resources:
Abstract
5744 - OncOS: scalable and accurate next-generation sequencing analytics for precision oncology and personalized patient care
Presenter: Joe Thompson
Session: Poster Display session 3
Resources:
Abstract
3752 - The association between wearable device physical activity metrics and performance status in oncology: a systematic review
Presenter: Milan Kos
Session: Poster Display session 3
Resources:
Abstract
5820 - SomaticNET: neural network evaluation of somatic mutations in cancer
Presenter: Geoffroy Dubourg-Felonneau
Session: Poster Display session 3
Resources:
Abstract
4771 - Is there a role for Next-generation sequencing (NGS) profiling on metastatic non-colorectal gastrointestinal carcinomas (MNCGIC) in developing countries? A single center experience.
Presenter: Mauricio Ribeiro
Session: Poster Display session 3
Resources:
Abstract
1209 - Metastatic Cancer Whole-Exome Sequencing in daily practice
Presenter: Manon Réda
Session: Poster Display session 3
Resources:
Abstract
5702 - Genomic-Guided Individualized Precision Therapy in Refractory Metastatic Solid Tumor Patients with Extensively Poor Performance Status: A Chinese single institutional prospective observational real-world study
Presenter: Haitao Wang
Session: Poster Display session 3
Resources:
Abstract