Abstract 144P
Background
Paclitaxel is commonly used as second-line therapy in advanced gastric cancer (AGC). The decision to proceed with second-line chemotherapy and select a chemotherapy regimen may be critical in vulnerable AGC patients after progression with first-line chemotherapy. However, there are no predictive biomarkers to identify patients with AGC who benefit from paclitaxel-based chemotherapy.
Methods
This study included 288 patients with AGC receiving second-line paclitaxel-based chemotherapy between 2017 and 2022 from K-MASTER project, a nationwide, government-funded precision medicine initiative. The data included clinicogenomic factors: clinical (age [young-onset vs. others], sex, histology [intestinal vs. diffuse type], prior trastuzumab use, duration of first-line chemotherapy, etc.) and genomic factors (pathogenic or likely pathogenic variants). The data were randomly divided into training and test sets (0.8:0.2). Three machine-learning methods, including random forest (RF), logistic regression (LR), and artificial neural network with genetic embedding (ANN) models, were used to develop the prediction model and were validated in the test sets.
Results
The median age was 64 years (range, 25-91) and 65.6% were male. A total of 288 patients were divided into training (n=230) and test sets (n=58). There were no significant differences in baseline characteristics between training and test sets. In the training set, the AUC for prediction of progression-free survival (PFS) with paclitaxel-based chemotherapy was 0.51, 0.73, and 0.75 in RF, LR, and ANN models, respectively. In the test set, the Kaplan-Meier curves of PFS were separated according to the three models: 2.8 vs. 1.5 months (P=0.07) in RF, 2.3 vs. 6.5 months (P=0.07) in LR, and 2.1 vs. 7.6 months (P=0.02) in ANN models.
Conclusions
These machine-learning models integrated clinical and genomic factors and can guide the selection of patients with AGC with a greater likelihood of a benefit from second-line paclitaxel-based chemotherapy. Further studies are necessary to validate and update these models in independent datasets in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
310P - A study on the prediction of recurrence site of endometrial cancer using various machine learning techniques
Presenter: Wonkyo Shin
Session: Poster Display
Resources:
Abstract
311P - Circulating cytokines in the differential diagnosis of endometrial cancer
Presenter: Tatyana Abakumova
Session: Poster Display
Resources:
Abstract
312P - Molecular and genetic features of squamous cell carcinoma of vulvar cancer depending on HPV status
Presenter: Visola Navruzova
Session: Poster Display
Resources:
Abstract
313P - Efficacy and safety of oral metronomic chemotherapy in recurrent refractory advanced gynaecological cancer: Experience from regional cancer center of eastern India
Presenter: Ranti Ghosh
Session: Poster Display
Resources:
Abstract
314P - Perioperative outcomes in advanced epithelial ovarian cancer treated with neoadjuvant bevacizumab and chemotherapy: Real-world experience from an Indian cancer centre
Presenter: Upasana Palo
Session: Poster Display
Resources:
Abstract
315P - Real-world experience of niraparib as maintenance therapy in newly diagnosed advanced ovarian cancer: A single-center retrospective study
Presenter: Wenxin Liu
Session: Poster Display
Resources:
Abstract
316P - First evidence of olaparib maintenance therapy in patients with newly diagnosed BRCA wild-type ovarian cancer: A real-world multicenter study
Presenter: Jing Li
Session: Poster Display
Resources:
Abstract
317P - Attitudes of Israeli gynecologists towards risk reduction salpingo-oophorectomy at hysterectomy for benign conditions and the use of hormonal therapy
Presenter: wisam Assaf
Session: Poster Display
Resources:
Abstract
319P - Survival prediction for ovarian cancer patients from Taiwan cancer registry data
Presenter: Tzu-Pin Lu
Session: Poster Display
Resources:
Abstract
320P - Treatment patterns and outcomes in Indian patients with advanced ovarian cancer: A single center experience
Presenter: Pushpendra Hirapara
Session: Poster Display
Resources:
Abstract