

Rectal Cancer

ESMO GUIDELINES : REAL WORLD CASES

Ralf – Dieter Hofheinz, Chair

Mannheim Cancer Center University Hospital Mannheim University of Heidelberg, Germany

Former approach in stage II / III rectal cancer: RT / CRT !!

Differential / alternative treatment options are available !!

Resection, neoad. chemo

Neoad. chemo, resection

Total neoadjuvant therapy

Differential treatment option are available !!

Total neoadjuvant therapy

Resection, neoad. chemo

ESMO ON AIR

Neoad. chemo, resection

Organ preservation / IO in MSI

Looking at ESMO CPG 2017 (Glynne-Jones et al.)

Clinically relevant trials during the past years

Immunotherapy for MSI tumors (2 -4%)

One size fits all = history. Decision making starts with discussion on treatment goals, molecular aspects and risk factors

German, Swiss & Austrian onkopedia guideline 2025

Programme

30 April 2025	
10 min	Welcome and introduction Ralf Hofheinz
10 min	Case Presentation Anderley Gordon
20 min	Presentation of the ESMO Clinical Practice Guideline for Critical Analysis of the Case Irit Ben Aharon
10 min	Considerations Related to Guideline Implementation in Everyday Clinical Practice and Discussion Gabor Liposits
10 min	Live Q&A and Discussion All speakers, Emmanouil Fokas

Ralf-Dieter Hofheinz

Chair Mannheim Cancer Center University Hospital Mannheim / University of Heidelberg

Anderley Gordon

Speaker The Royal Marsden Hospital

Irit Ben-Aharon Speaker Fishman Oncology Center, Rambam Health Care

Campus

Gabor Liposits Speaker Western Hospital Trust

Learning objectives

- Promote evidence-based quality cancer care by disseminating the ESMO Clinical Practice Guidelines (CPG) in the oncology community.
- Present a clinical case for each of the selected topics for discussion in the context of the ESMO CPG recommendations.
- Present and critically review the ESMO CPG recommendations for each selected cancer type.
- Discuss the case, the ESMO CPG recommendations, their impact on care and implementability in the daily practice setting under the guidance of a moderator senior expert, with participation of the guideline authors, practicing oncologists and young oncologists.
- Audit the fulfillment of the learning objectives and acceptability of the ESMO CPG recommendations by means of an online questionnaire.

CASE PRESENTATION

Rectal Cancer

Dr Anderley Gordon

Clinical Research Fellow The Royal Marsden Hospital

30 April 2025

Declaration of interests

No disclosures

Presentation

36-year-old female

- No significant past medical history
- No family history
- Non- smoker, no alcohol, single, no children, lives alone
- Accountant, plays tennis, enjoys traveling abroad with friends

February 2024

Presents with rectal bleeding, abdominal pain, fecal urgency and frequency (3-4 x day) Stool FIT test positive >6000 ug/g Colonoscopy – tumour in rectosigmoid colon, distal tumour margin 16cm

Moderately differentiated adenocarcinoma, MMR proficient

CEA <1

February 2024

Baseline CT TAP, MRI pelvis, FDG PET

- Mid-high rectal tumor arising 12cm from anal verge
- Numerous malignant nodes which threaten the margin at CRM (12 to 1 o'clock).
- No distant metastases
- Stage: T3dN1 EMVI positive CRM at risk M0.

MDT recommends upfront chemotherapy prior to consideration of CRT and surgery

Completes egg harvesting for fertility preservation

Neoadjuvant treatment

March – May 2024

Receives 4 x neoadjuvant CAPOX

Starts with 50% dose reduction capecitabine due to DPYD variant of unknown significance

Toxicities

- During C1 admitted with G2 diarrhoea ?possible colitis. CT showed oedema in proximal and descending colon. Capecitabine paused and symptoms resolved.
- C2-C4 continues with 50% dose reduction without further occurrence.
- G1 peripheral sensory neuropathy, G1 fatigue, G2 nausea

Post neoadjuvant CAPOX x4

May 2024

CT TAP

- Some response to primary and associated node on CT
- Indeterminate 1cm right subpleural lung nodule (increased from 0.4cm at baseline)

MRI pelvis

- Partial response tumour 56mm \rightarrow 43mm
- ymr T3c N1c, CRM+, EMVI-
- TRG 4 suggesting residual active disease

CEA <1

New solitary lung metastasis

June 2024 PET CT shows right subpleural lung nodule is hypermetabolic compared to baseline PET CT.

Neoadjuvant treatment

June 2024 MDT

- 1. CRT to primary before surgery.
- 2. Ablation of solitary lung metastasis.
- 3. For 6 months total of CAPOX (4 x further CAPOX) post surgery

July to August 2024

Receives radiation 52.5Gy/25 fractions to the rectum concurrent with capecitabine.

Cryoablation to right subpleural lung nodule 10/07/2024

G1 fatigue, G1 nausea, poor appetite

Struggling emotionally with treatment, referred to psychological support team

Post neoadjuvant CRT

September 2024

CT TAP, MRI pelvis

- Further partial response but residual active tumour signal remains (mainly extraluminal)
- Posterior margin remains involved.
- Treated lung appearances, no new sites of disease

Surgery & adjuvant chemotherapy

October 2024

Robotically assisted anterior resection with enbloc pre-sacral fascia excision and defunctioning ileostomy

Final histology: ypT3 N1a (1/47) L1 V1 Pn1 R0.

No post-operative complications

Dec 2024 – Feb 2025

Completes 4 x adjuvant CAPOX (8 cycles total)

CEA <1 prior to starting

Grade 2 nausea and vomiting, and oxaliplatin extravasation after C5. Improved with 25% dose reduction to oxaliplatin for C6-8.

Referred to genetics (delayed referral) and awaiting consultation

Surveillance

19 March: CT scan no evidence of recurrence. CEA <1

24 March 2025:

Flexible sigmoidoscopy shows colorectal anastomosis intact and patent.

Undergoes Ileostomy reversal

- Bowels initially slow to open but now loose and frequent
- Requiring dietician support
- Minimal abdominal pain

4 April 2025: Follow up consultation. Continues surveillance with next review in 3 months which will be 1 year post lung ablation.

Quality of Life

Residual chemotherapy

• G1 peripheral neuropathy persists of hands

Bowel / stoma reversal

- Feels very "relieved" to have stoma reversal but now struggling with loose and frequent stools
- On low residue diet with plans to slowly reintroduce fibre with dietician support
- Weight is stable 56kg at diagnosis, now 54kg.

Other impacts

- Significant health anxiety, particularly around CT scans
- Stopped working at time of diagnosis but plans to return to same job part time and eventually full time.
- Has not travelled since diagnosis and very motivated to take a summer holiday

CRITICAL ANALYSIS IN VIEW OF CLINICAL PRACTICE GUIDELINES

Rectal Cancer

Prof. Irit Ben-Aharon

Rambam Health Care Campus Haifa, Israel

30 April 2025

Irit Ben-Aharon MD, PhD - Disclosure

Astra Zeneca – Invited speaker MERCK– Invited speaker MSD – Invited speaker BMS – Invited speaker Medison – Invited speaker Astellas – Advisory Board BeiGene - Advisory Board

Editor role: Editor in Chief – ESMO Gastrointestinal Oncology EORTC GITCG – Chair, Young-adult Cancer Task Force

Presentation

36-year-old female

- No significant past medical history
- No family history
- Non- smoker, no alcohol, single, no children, lives alone
- Accountant, plays tennis, enjoys traveling abroad with friends

February 2024

Presents with rectal bleeding, abdominal pain, fecal urgency and frequency (3-4 x day) Stool FIT test positive >6000 ug/g Colonoscopy – tumour in rectosigmoid colon, distal tumour margin 16cm Moderately differentiated adenocarcinoma, MMR proficient CEA <1

Increase in EOCRC reflects a birth cohort effect

Young-Onset Cancer – Unique Considerations

Potential Etiological Factors in Sporadic EOCRC

Ben-Aharon et al., Cancer Disc 2023

Presentation

36-year-old female

- No significant past medical history
- No family history
- Non- smoker, no alcohol, single, no children, lives alone
- Accountant, plays tennis, enjoys traveling abroad with friends

February 2024

Presents with rectal bleeding, abdominal pain, fecal urgency and frequency (3-4 x day) Stool FIT test positive >6000 ug/g

Colonoscopy – tumour in rectosigmoid colon, distal tumour margin 16cm

Moderately differentiated adenocarcinoma, MMR proficient

CEA <1

MMR in the neoadjuvant setting -

Assessment of mismatch repair (MMR) proteins by is essential:

IMMUNOHISTOCHEMISTRY (IHC)

• POLYMERASE CHAIN REACTION (PCR)

- To identify patients with sporadic microsatellite instability-high (MSI-H) tumours or Lynch syndrome, who may benefit from treatment with immunotherapy
- In the case of Lynch syndrome, referral for genetic counselling.

MMR in the neoadjuvant setting -

Summary of published clinical trials of neoadjuvant immunotherapy in dMMR, locally advanced CRCs						
Trials	Setting	Phase	Patients (lynch syndrome,%)	Therapy	Outcome	
NICHE	Neoadjuvant	Ш	32 (13, 41%)	Nivolumab+ipilimumab	pCR (69%)	
PICC	Neoadjuvant	Ш	17 vs 17 (4, 24% vs 1, 6%)	Toripalimab+celecoxib vs Toripalimab	pCR (88% vs 65%)	
NCT04165772	Neoadjuvant	Ш	14 (8, 57%)	Dostarlimab	cCR (100%)	

MMR in the neoadjuvant setting -

STAGING -

February 2024

Baseline CT TAP, MRI pelvis, FDG PET

- Mid-high rectal tumor arising 12cm from anal verge
- Numerous malignant nodes which threaten the margin at CRM (12 to 1 o'clock).
- No distant metastases
- Stage: T3dN1 EMVI positive CRM at risk M0.

MDT recommends upfront chemotherapy prior to consideration of CRT and surgery

Completes egg harvesting for fertility preservation

STAGING

- MRI is the golden standard for local staging of rectal cancer.
- It is superior to Endorectal Ultrasound (ERUS) as ERUS accuracy for evaluating the mesorectal compartment is restricted.
- MRI is the best tool to identify the relationship between the tumor and the mesorectal fascia (MRF), and the involvement of the MRF.

- T stage
- Nodal metastases
- A threatened or involved mesorectal fascia
- The presence of extramural venous invasion

STAGING

- Direct tumor invasion into the extramural veins on histopathology, known as extramural venous invasion (EMVI), has been recognized as an indicator of poor prognosis
- EMVI is defined histopathologically as the presence of tumor cells within blood vessels located beyond the muscularis propria of the rectal wall
- Nevertheless, defining EMVI is challenging since the differential diagnosis includes desmoplastic reaction

Elastin stain is helpful to depict EMVI by highlighting elastin fiber around tumor cells

STAGING -

February 2024

Baseline CT TAP, MRI pelvis, FDG PET

- Mid-high rectal tumor arising 12cm from anal verge
- Numerous malignant nodes which threaten the margin at CRM (12 to 1 o'clock).
- No distant metastases
- Stage: T3dN1 EMVI positive CRM at risk M0.

MDT recommends upfront chemotherapy prior to consideration of CRT and surgery

Completes egg harvesting for fertility preservation

High-risk criteria:

- cT4
- cN2
- mrCRM+
- EMVI+
- lateral LN+

Neoadjuvant options:

Study (year)	Inclusion criteria	N	Primary endpoint	Treatment arms	pCR rate (%)	R0 rate (%)	DFS (%)	OS (%)	DM (%)	LRR (%)
RAPIDO	At least one of: cT4a/b;	920	3-year DRTF	$SCRT \rightarrow CT \rightarrow TME$	28	90	23.7	89.1	20.0	8.3
(2021)	EMVI; cN2; MRF+; LLN			$CRT \rightarrow TME$	14	90	30.4	88.8	26.8	6.0
PRODIGE 23	cT3/4	461	3-year DFS	$CT \rightarrow CRT \rightarrow TME$	28	95	76	91	17	4
(2021)			-	CRT→TME	12	94	69	88	25	6
STELLAR	cT3/4 or cN+	599	DFS	SCRT \rightarrow CT \rightarrow TME	17.2	91.5	64.5	86.5	22.8	8.4
(2022)				$CRT \rightarrow TME$	13.9	87.8	62.3	75.1	24.7	11.0
OPRA (2022)	cT3/4 or cN+	324	DFS	$CT \rightarrow CRT \rightarrow TME$	NS	91	76	NS	16	6
				$CRT \to CT {\to} TME$	NS	88	76	NS	18	6

Primary end-point RAPIDO Trial: Disease related treatment failure

Primary end-point PRODIGE 23 Trial: DFS

Patient Demographics: RAPIDO and PRODIGE 23

Patients Characteristics	RAPIDO	PRODIGE 23
Median age	61/61 y	61/62 y
Ν	462/450	231/ 230
cT4	30.4% vs 31.8%	17.8% vs 15.6%
cN2	68% vs 68%	NR
EMVI +	32% vs 28%	NR
MRF+	62% vs 60%	26.0% vs 27.7%

Clinical Outcomes: RAPIDO and PRODIGE 23

OUTCOMES	RAPIDO	PRODIGE 23
Median FOLLOW UP	4.6 yrs	4.6 yrs
Primary end point	3-yrs DrTF	3-yrs DFS
3-yrs Primary event (Δ%)	23.7% vs 30.4% (6.7%)	76% vs 69% (7%)
5-yrs	27% vs 34% (7%)	—
HR (95% CI) p value	0.75 [0.60–0.96] p=0.019	0.69 [0.49–0.97]; p=0.034
3-yrs Metastasis free	80% vs 73.2%	79% vs 72%
pCR rate	28.4% vs 14.3%	27.5% vs 11.7%
Local relapse rate	10% vs 6% at 5 years	4.8% vs 5.7% at 3 years
3-yrs Overall Survival	89.1% vs 88.8%	91% vs 88%

Conroy T, et al. Lancet Oncol 2021; 22:702–715 Bahadoer RR, et al. Lancet Oncol 2021; 22:29–42 Dijkstra E, et al. Ann Surg 2023: doi: 10.1097/SLA.00000000005799

Randomized Phase II Trial of Chemoradiotherapy Plus Induction or Consolidation Chemotherapy as Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer: CAO/ARO/AIO-12

Organ Preservation in Patients With Rectal Adenocarcinoma Treated With Total Neoadjuvant Therapy (Phase II randomised OPRA Trial)

DFS and OS in Patients With Rectal Adenocarcinoma Treated With TNT (Phase II OPRA Trial)

Primary outcomes in RAPIDO, PRODIGE 23 and OPRA trials

OUTCOMES	RAPIDO	PRODIGE 23	OPRA
Median FU	4.6 yrs	4.6 yrs	3 yrs
Primary end point	3-yrs DrTF	3-yrs DFS	3-yrs DFS
3-yrs Primary event (Δ %)	23.7% vs 30.4% (6.7%)	76% vs 69% (7%)	76% vs 76%
5-yrs	27% vs 34% (7%)	_	_

Take home message:

TOTAL NEOADJUVANT TREATMENT SHOULD BE CONSIDERED:

- CRT followed by CT should be favored
- Higher pCR rates expected
- Better tolerance and compliance vs postoperative treatment
- Better Disease related treatment failure and better Disease free survival
- Better expectations for nonoperative approaches

In case of suspected systemic disease - start CHEMO first!

Radiation - Free option:

February 2024

Baseline CT TAP, MRI pelvis, FDG PET

- Mid-high rectal tumor arising 12cm from anal verge
- Numerous malignant nodes which threaten the margin at CRM (12 to 1 o'clock).
- No distant metastases
- Stage: T3dN1 EMVI positive CRM at risk M0.

MDT recommends upfront chemotherapy prior to consideration of CRT and surgery

Completes egg harvesting for fertility preservation

ESVIO GOOD SCIENCE BETTER MEDICINE BEST PRACTICE

Available online 22 September 2020

SPECIAL ARTICLE

Fertility preservation and post-treatment pregnancies in post-pubertal cancer patients: ESMO Clinical Practice Guidelines †

M. Lambertini^{1,2}, F. A. Peccatori³, I. Demeestere⁴, F. Amant^{5,6}, C. Wyns⁷, J.-B. Stukenborg⁸, S. Paluch-Shimon⁹, M. J. Halaska¹⁰, C. Uzan¹¹, J. Meissner¹², M. von Wolff¹³, R. A. Anderson¹⁴ & K. Jordan¹², on behalf of the ESMO Guidelines Committee^{*}

- Ovarian transposition should be considered in order to try to preserve ovarian function in women ≤40 years of age with an indication for pelvic RT [IV, A].
- Ovarian transposition should be carried out by experienced laparoscopists to minimise complications and maximise the chances of ovarian function preservation [IV, A].

OVARIAN SUPPRESSION

Available meta-analyses assessing the role of temporary ovarian suppression with GnRH-a during chemotherapy in cancer patients						
Author(s), year (reference)	Disease type	No. of included studies (no. of RCTs)	No. of patients	Overall results		
Clowse et al., 2009	Autoimmune diseases, HL and NHL	9 (2)	366	Protection for POI		
Ben-Aharon et al., 2010	Autoimmune diseases, breast cancer, HL and NHL	16 (5)	681	Protection for POI (not in RCTs)		
Kim et al., 2010	Autoimmune diseases, breast cancer, HL and NHL	11 (3)	654	Protection for POI		
Bedaiwy et al., 2011	Breast cancer, ovarian cancer, and HL	6 (6)	340	Protection for POI (not for pregnancy)		
Yang et al., 2013	Breast cancer	5 (5)	528	Protection for POI (not for pregnancy)		
Wang et al., 2013	Breast cancer	7 (7)	677	Protection for POI		
Zhang et al., 2013	HL and NHL	7 (3)	434	Protection for POI (not for pregnancy)		
Sun et al., 2014	Breast cancer, ovarian cancer, and HL	8 (8)	621	Protection for POI (not for pregnancy)		
Del Mastro et al., 2014	Breast cancer, ovarian cancer, HL and NHL	9 (9)	765	Protection for POI		
Vitek et al., 2014	Breast cancer (hormone receptor-negative only)	4 (4)	252	No protection		
Elgindy et al., 2015	Breast cancer, ovarian cancer, HL and NHL	10 (10)	907	No protection		
Shen et al., 2015	Breast cancer	11 (11)	1,062	Protection for POI (not for pregnancy)		
Lambertini et al., 2015	Breast cancer	12 (12)	1,231	Protection for POI (also for pregnancy)		
Munhoz et al., 2016	Breast cancer	7 (7)	856	Protection for POI (also for pregnancy)		
Silva et al., 2016	Breast cancer	7 (7)°	1,002	Protection for POI		
Bai et al., 2017	Breast cancer	15 (15)°	1,540*	Protection for POI (also for pregnancy)		
Senra et al., 2018	Breast cancer, HL, and NHL	13 (13)	1,208	Protection for POI (also for pregnancy)		
Hickman et al., 2018	Breast cancer, ovarian cancer, HL, and NHL	10 (10)	1,051	Protection for POI		
Lambertini et al., 2018	Breast cancer	5 (5)	8/3	Protection for POI (also for pregnancy)		
Sofiyeva et al., 2019	Autoimmune diseases, breast cancer, HL, and NHL	18 (11)	1,043	Protection for POI		
Zheng et al., 2019	Breast cancer, HL, and NHL	12 (12)	1,413	Protection for POI (not for pregnancy)		
Chen et al., 2019	Breast cancer, ovarian cancer, and HL	12 (12)	1,369	Protection for POI (not for pregnancy)		

Note: Updated and modified from Lambertini et al. (103).GnRH-a = gonadotropin-releasing hormone agonist; HL = Hodgkin lymphoma; NHL = non-Hodgkin lymphoma; POI = premature ovarian insufficiency; RCT = randomized controlled trial. ^a Data from the two publications of the PROMISE-GIM6 trial, by Del Mastro et al. (40) and Lambertini et al. (81), were considered twice instead of as from the same study.

^b Based on individual patient-level data.

Dolmans. GnRH agonists and fertility preservation. Fertil Steril 2020.

OVARIAN SUPPRESSION

Available meta-analyses as Author(s), year (reference)	sessing the role of temporary ovarian suppression Disease type	with GnRH-a du No. of included studies (no. of RCTs)	ring chen No. of patients	Lack of evidence for CRC!
Clowse et al., 2009 Ben-Aharon et al., 2010 Kim et al., 2010 Bedaiwy et al., 2011 Yang et al., 2013 Wang et al., 2013 Zhang et al., 2013 Sun et al., 2014 Del Mastro et al., 2014 Vitek et al., 2014 Elgindy et al., 2015 Shen et al., 2015 Lambertini et al., 2015 Munhoz et al., 2015 Bai et al., 2016 Bai et al., 2017 Senra et al., 2018 Hickman et al., 2018 Lambertini et al., 2018 Lambertini et al., 2018 Chen et al., 2019 Chen et al., 2019	Autoimmune diseases HL and NHL Autoimmune diseases breast cancerr HL and NHL Autoimmune diseases breast cancerr HL and NHL Breast cancer Breast cancer HL and NHL Breast cancer HL and NHL Breast cancer Breast canc	9 (2) 16 (5) 11 (3) 6 (6) 5 (5) 7 (7) 7 (3) 8 (8) 9 (9) 4 (4) 10 (10) 11 (11) 12 (12) 7 (7) ^a 15 (15) ^a 13 (13) 10 (10) 5 (5) ^b 18 (11) 12 (12) 12 (12) 12 (12)	366 681 654 340 528 677 434 621 765 252 907 1,062 1,231 856 1,002 ^a 1,540 ^a 1,540 ^a 1,208 1,051 873 1,043 1,413 1,369	Pri Pri Pri Pri Pri Pri Pri Protection for POI Protection for POI (not for pregnancy) Protection for POI (also for pregnancy) Protection for POI (not for pregnancy) Protection for POI (not for pregnancy) Protection for POI (not for pregnancy)

Note: Updated and modified from Lambertini et al. (103).GnRH-a = gonadotropin-releasing hormone agonist; HL = Hodgkin lymphoma; NHL= non-Hodgkin lymphoma; POI = premature ovarian insufficiency; RCT = randomized controlled trial. ^a Data from the two publications of the PROMISE-GIM6 trial, by Del Mastro et al. (40) and Lambertini et al. (81), were considered twice instead of as from the same study.

^b Based on individual patient-level data.

Dolmans. GnRH agonists and fertility preservation. Fertil Steril 2020.

Neoadjuvant treatment

March – May 2024

Receives 4 x neoadjuvant CAPOX

Starts with 50% dose reduction capecitabine due to DPYD variant of unknown significance

Toxicities

- During C1 admitted with G2 diarrhoea ?possible colitis. CT showed oedema in proximal and descending colon. Capecitabine paused and symptoms resolved.
- C2-C4 continues with 50% dose reduction without further occurrence.
- G1 peripheral sensory neuropathy, G1 fatigue, G2 nausea

Optimize 5FU therapy

- Personalized approach by improving dosing accuracy and reducing toxicity in 5-FU treatments.
- Pre therapeutic screening -DPYD genotyping/ (DPD phenotyping)
- Therapeutic drug monitoring- TDM

RETTER MEDICE

DPD DEFICIENCY

Treatment-related deaths were reported in 0.1% in patients without DPYD variants and in 2.3% of those with known DPYD variants (95% CI, 1.3%–3.9%)

Partial DPD Deficiency: Affects approximately 3–8% of individuals 0.1–0.2% has a complete DPD enzyme deficiency

Carin A et al, European Journal of Human Genetics, 2020

Nomenclature of DPYD

Legacy name	rsID	Variant (NM_000110.4)	protein nomenclature	Allele frequency	Allele activity score
*2A	rs3918290	c.1905+1G>A	Not changed	0.3-0.5%	0
*13	rs5588062	c.1679T>G	p.1560S	0.08%	0
N/A	rs67676798	c.28464A>T	p.D949V	0.37-1%	0.5
НарВЗ	rs56038477 rs75017182	<u>c.1129-5923C > G</u> c.1236G >A	Not changed	0.06- 2.4 %	0.5

Over 1598 sequence variants in the DPYD gene have been identified

An individual can have more than two variants.CPIC guideline uses a DPD activity score.

•Normal function variants: Assigned an activity value of 1.
•Nonfunctional variants: Assigned an activity value of 0.
•Decreased activity variants: Assigned an activity value of 0.5.
•The two lowest scoring variants are used to calculate the activity score.

Phenotype	Implications for phenotypic measures	Dosing recommendations	Classification of recommendations ^b		
DPYD normal metabolizer	Normal DPD activity and "normal" risk for fluoropyrimidine toxicity.	Based on genotype, there is no indication to change dose or therapy. Use label- recommended dosage and administration.	Strong		
DPYD intermediate metabolizer	Decreased DPD activity (leukocyte DPD activity at 30% to 70% that of the normal population) and increased risk for severe or even fatal drug tox- icity when treated with fluoropyrimi- dine drugs.	Reduce starting dose based on activity score followed by titration of dose based on toxicity ^c or therapeutic drug monitoring (if available). Activity score 1: Reduce dose by 50% Activity score 1.5: Reduce dose by 25% to 50%	Activity score 1: Strong Activity score 1.5: Moderate		
DPYD poor metabolizer	Complete DPD deficiency and increased risk for severe or even fatal drug toxicity when treated with fluoropyrimidine drugs.	 Activity score 0.5: Avoid use of 5-fluorouracil or 5-fluorouracil prodrug-based regimens. In the event, based on clinical advice, alternative agents are not considered a suitable therapeutic option, 5-fluorouracil should be administered at a strongly reduced dose^d with early therapeutic drug monitoring.^e Activity score 0: Avoid use of 5-fluorouracil or 5-fluorouracil prodrug-based regimens. 	Strong		

Table 2 Recommended dosing of fluoropyrimidines^a by DPD phenotype

Testing for DPYD recommendation

EMA- On 13 March 2020, the EMA's Pharmacovigilance Risk Assessment Committee (PRAC) recommended Testing DPD before starting treatment fluoropyrimidines. Phenotyping dihydrouracil to uracil (UH2/U) ratio in plasma as surrogate marker for 5-FUH2/5-FU or genotyping for DPYD risk variant alleles https://www.pharmgkb.org/guidelineAnnotation/PA166109594

Dosing Info 🚯 Alternate Drug 🚯 🍸 Pediatric 🗉 Annotation > Summary **Related Chemicals** The CPIC Dosing Guideline for 5-fluorouracil and capecitabine recommends an alternative drug for patients who are DPYD poor metabolizers with an activity score of 0. In those who are poor metabolizers with an activity score of 0.5, an alternative drug is also Publications recommended, but if this is not considered a suitable therapeutic option, 5-fluorouracil or capecitabine should be administered at a strongly reduced dose with early therapeutic drug monitoring. Patients who are intermediate metabolizers with an activity score of 1 or 1.5 should receive a dose reduction of 50%. Patients with the c.[2846A>T];[2846A>T] genotype may require a >50% dose reduction **Clinical Annotations** Links Specify a genotype for specific annotations History Pick alleles for DPYD Alleles not present in the above pull-down menus have no guideline recommendation. Annotation and DPV When calculating activity score, only the two lowest allele activity values are summed together: 1905+1 A allele (0) e (0.5) + 85 C allele (1) = 0.5 85 C allele (1) + 85 C allele (1) + 1627 C allele (1) = 2 LUNOI LAIN MILLICINLO AULINO I SCIENCE MEDICINES HEALTH

Post neoadjuvant CAPOX x4

May 2024

CT TAP

- Some response to primary and associated node on CT
- Indeterminate 1cm right subpleural lung nodule (increased from 0.4cm at baseline)

MRI pelvis

- Partial response tumour 56mm \rightarrow 43mm
- ymr T3c N1c, CRM+, EMVI-
- TRG 4 suggesting residual active disease

CEA <1

New solitary lung metastasis

June 2024 PET CT shows right subpleural lung nodule is hypermetabolic compared to baseline PET CT.

Neoadjuvant treatment

June 2024 MDT

- 1. CRT to primary before surgery.
- 2. Ablation of solitary lung metastasis.
- 3. For 6 months total of CAPOX (4 x further CAPOX) post surgery

July to August 2024

Receives radiation 32Gy/25 fractions to the rectum concurrent with capecitabine.

Cryoablation to right subpleural lung nodule 10/07/2024

G1 fatigue, G1 nausea, poor appetite

Struggling emotionally with treatment, referred to psychological support team

Oligometastatic Colorectal Cancer:

SBRT, stereotactic body radiotherapy, TARE, transarterial radioembolisation, SIRT, selective internal radiotherapy; TA, thermal ablation, HAIC, hepatic arterial infusion chemotherapy; TACE, transarterial chemoembolisation

Cervantes A. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023 Jan;34(1):10-32

BETTER MEDICIN

Local Treatment for OMD according to CPG

- The majority of OMD studies were conducted in the setting of liver metastases.
- In patients with lung-only metastases or OMD including lung lesions, thermal ablation may be considered along with resection, according to tumour size, number, location, the extent of lung parenchyma loss, comorbidity or other factors [III, B].

SBRT, stereotactic body radiotherapy, TARE, transarterial radioembolisation, SIRT, selective internal radiotherapy; TA, thermal ablation, HAIC, hepatic arterial infusion chemotherapy; TACE, transarterial chemoembolisation

Post neoadjuvant CRT

September 2024

CT TAP, MRI pelvis

- Further partial response but residual active tumour signal remains (mainly extraluminal)
- Posterior margin remains involved.
- Treated lung appearances, no new sites of disease

Surgery & adjuvant chemotherapy

October 2024

Robotically assisted anterior resection with enbloc pre-sacral fascia excision and defunctioning ileostomy

Final histology: ypT3 N1a (1/47) L1 V1 Pn1 R0.

No post-operative complications

Dec 2024 – Feb 2025

Completes 4 x adjuvant CAPOX (8 cycles total)

CEA <1 prior to starting

Grade 2 nausea and vomiting, and oxaliplatin extravasation after C5. Improved with 25% dose reduction to oxaliplatin for C6-8.

Referred to genetics (delayed referral) and awaiting consultation

Surveillance

19 March: CT scan no evidence of recurrence. CEA <1

24 March 2025:

Flexible sigmoidoscopy shows colorectal anastomosis intact and patent.

Undergoes Ileostomy reversal

- Bowels initially slow to open but now loose and frequent
- Requiring dietician support
- Minimal abdominal pain

4 April 2025: Follow up consultation. Continues surveillance with next review in 3 months which will be 1 year post lung ablation.

ESMO Guidelines Webinar – Rectal cancer

Gabor Liposits MD, PhD Innlandet Hospital Trust Norway

30 April 2025

Declaration of interest

Gabor Liposits, MD, PhD

Financial interests:

Honoraria: Danone, Servier, MSD Congress support (travel and accommodation): Servier Advisory board: MSD

Non-financial interests:

ESMO COTF member ESMO DCTF member SIOG Board member

Practice perspectives

On behalf of the ESMO Community Oncologist Task Force

BETTER MEDICIN

Epidemiology – rectal cancer incidence in Norway

Evidence base vs clinical practice

Significant gap in knowledge exists regarding the optimal management in unselected patients

ESMO ON AIR

Cancer is a disease of aging

Most patients in daily practice are not represented in RCTs

RCTs include young and fit adults

Unselected patients experience less benefit and more toxicities

Median age and performance status in RCTs testing TNT

Younger and fit population = clinical trial population

RCT	N	Median age/ECOG	Neoadjuvant approach	Adjuvant chemotherapy
POLISH II	261	60 / 0-1	RT + FOLFOX x3	
	254	60 / 0-1	CRT (FPOx)	
RAPIDO	462	62 / 0-1	RT + CapOx x 6 or FOLFOX x9	
	450	62 / 0-1	CRT	CapOx x 8 or FOLFOX x 12
STELLAR	302	55 / 0-1	RT + CapOx x 4	CapOx x 2
	297	56 / 0-1	CRT	CapOx x 6
PRODIGE 23	231	61 / 0-1	FOLFIRINOX x 6 ⇔ CRT	FOLFOX x 6 or Cap x 4
	230	62 / 0-1	CRT	FOLFOX x 12 or Cap x 8

Precision medicine – right treatment to the right patient

IN-DEPTH CHARACTERIZATION OF THE TUMOR AND THE PATIENT

Diagnostic work-up

Early diagnosis – optimal age cut-off to start screening? Personalized strategies?

Delayed diagnosis in young patients – rectal cancer may occur in the 20s and 30s as well

Reflections:

Routine utilization of PET-CT is not recommended – limited added value (resource optimalization) Normal CEA does not rule out locoregional advanced or metastatic disease – dynamics of CEA DPD testing is essential to avoid serious/life threatening adverse events related to 5FU/capecitabine

Precision medicine – right treatment to the right patient

IN-DEPTH CHARACTERIZATION OF THE TUMOR AND THE PATIENT

Patient-related factors and preferences may substantially differ in young vs older adults

Functional status - adults are heterogenous

Long life expectancy High level of functioning No significant comorbidities Normal organ function Available for intensive treatment

Short(er) life expectancy Low level of functioning Significant comorbidities Impaired organ function Geriatric syndromes

Fit and young patients Standard of care Focus on survival

ESMO ON AIR

Vulnerable – personalized strategies Balancing survival and QoL Frail – best supportive care Focus on quality of life

Issues and considerations in young and fit patients

Life-style factors – obesity, dietary habits, alcohol and smoking, sedentary lifestyle

(Colo)rectal cancer might be present in adults with healthy-lifestyle as well – the role of microbiome?

Genetic counseling is recommended < 50 years

Focus on fertility preservation and issues related to chemotherapy/pelvic radiotherapy

Timely access to fertility preservation counseling and oocyte/sperm cryopreservation might be limited

Patient preferences – survival, often willing to accept more toxicities

Shared decision-making

Long-term toxicities - CIPN, chronic pain, bowel disfunction, sexual functioning, fatigue, cognitive issues Survivorship issues – QoL, psychological burden, increased risk for secondary cancer

The right approach to vulnerable/older patients

Geriatric screening/assessment

Aging is the strongest non-modifiable risk factor for cancer

Most patients are older

Patients-centered endpoints vs survival

REVIEW

Adequate assessment yields appropriate care—the role of geriatric assessment and management in older adults with cancer: a position paper from the ESMO/SIOG Cancer in the Elderly Working Group

Rectal cancer may occur in young age as well

Focus should be on symptoms and low threshold for referral to coloscopy regardless of age

Coordinated resource intensive multidisciplinary effort foregoes optimally in high-volume centers

High quality radiology, pathology, surgery, radiotherapy, medical oncology, and geriatrics are crucial

In-depth characterization of the patient is also essential part of the strategy

Fit patients are available for intensive treatment, vulnerable adults often need personalized strategies

Patient preferences – shared decision-making

Management of chronic toxicities and survivorship issues need long-term follow-up and resources

