

ESMO VIRTUAL JOURNAL CLUB

Sylvie Lorenzen, Chair

Klinikum rechts der Isar, Department of Hematology and Oncology, Technical University Munich

19 March 2025

LEARNING OBJECTIVES

- •To discuss and critically evaluate notable recent publications.
- •To enhance the understanding and application of the latest research in the field.
- •To assess the study's robustness, its significance to oncology practice, limitations, and its place within existing research.
- •To identify and highlight any unclear aspects or unmet needs.

PROGRAMME AND SPEAKERS

19 March 2025	
5 min	Welcome and introduction
	Sylvie Lorenzen
20 min	Imlunestrant with or without Abemaciclib in Advanced Breast Cancer
	Michael Ignatiadis
20 min	Nivolumab plus Ipilimumab in Microsatellite-Instability–High Metastatic Colorectal Cancer
	Claire Gallois
10 min	Live Q&A and Discussion
	All speakers

Sylvie Lorenzen

Chair Klinikum rechts der Isar Department of Hematology and Oncology Technical University Munich

Michail Ignatiadis Speaker Institut Jules Bordet Hôpital Universitaire de Bruxelles

Speaker Hôpital européen Georges-Pompidou

ESMO ON AIR

Imlunestrant with or without Abemaciclib in Advanced Breast Cancer

Michail Ignatiadis MD, PhD

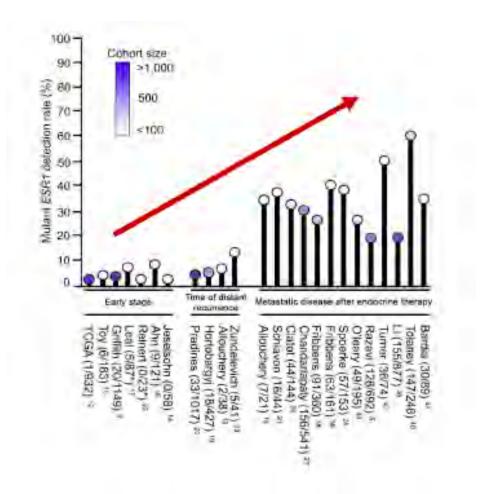
Director Breast Medical Oncology Clinic, Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Belgium

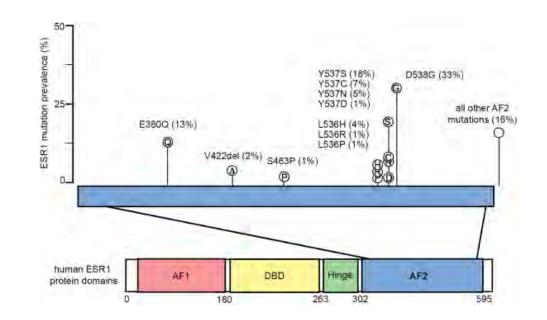
Chair Breast Cancer Group, EORTC

19 March 2025

Disclosures

- Consultant or advisory role (honoraria): Seattle Genetics, Daichi, AstraZeneca, Menarini/Stemline, Gilead Sciences, Rejuveron Senescence Therapeutics, and Novartis
- ✓ Research grants to my Institute: Roche, Pfizer, Natera Inc, Inivata Inc


✓ Stock ownership: None

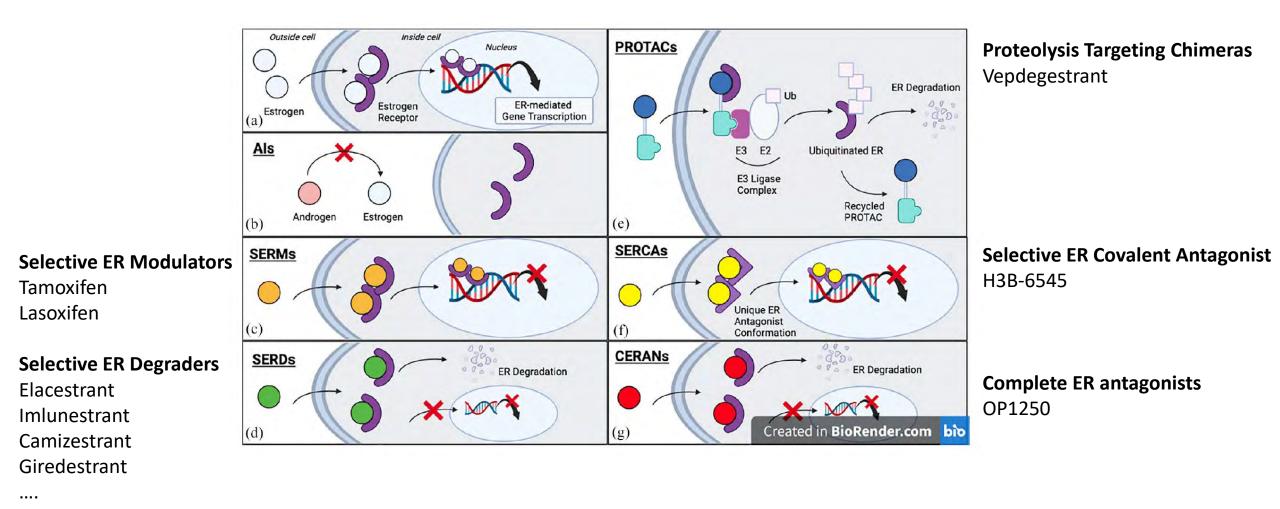

✓Travel grants: Gilead, Roche, Astra Zeneca

ESR1 mutations

Ligand-binding domain

Constitutive ligand-independent ER activity

Enriched in metastatic disease


Al resistance

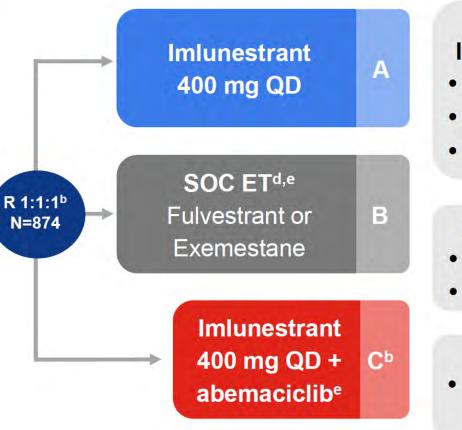
Decreased Fulvestrant affinity

Emerging ER targeting drugs

ESMO ON AIR

Trial design

ER+, HER2- ABC


Men and Pre-^a/Post-menopausal women

Prior therapy:

- Adjuvant: Recurrence on or within 12 months of completion of AI ± CDK4/6i
- ABC: Progression on first-line AI ± CDK4/6i
- No other therapy for ABC

Stratification Factors:

- Prior CDK4/6i therapy (Y/N)
- Visceral metastases (Y/N)
- Region^c

Primary Endpoints Investigator-assessed PFS for^f:

- A vs B in patients with ESR1mg
- A vs B in all patients
- C vs A in all^h patients

Key Secondary Endpoints

- OS, PFS by BICR, and ORR
- Safety

Exploratory Endpoints

 PFS and OS for C vs B in all^h patients

ABC, advanced breast cancer; AI, aromatase inhibitor; BICR, blinded independent central review; CDK4/6i CDK4/6 inhibitor; ER, estrogen receptor; *ESR1m*, *ESR1* mutation; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; QD, once daily; SOC ET, standard of care endocrine therapy. Patients were enrolled from October 2021 to November 2023 across 195 sites in 22 countries. ^a A GnRH agonist was required in men and premenopausal women; ^b Enrollment into Arm C started with Protocol Amendment A (at which point 122 patients had been randomized across Arms A and B); ^c East Asia vs United States/European Union vs others; ^d Investigator's choice; ^e Labeled dose; ^f Scans every 8 weeks for the first 12 months, then every 12 weeks; ^g *ESR1m* status was centrally determined in baseline plasma by the Guardant 360 ctDNA assay and OncoCompass Plus assay (Burning Rock Biotech) for patients from China; ^h Analysis conducted in all concurrently randomized patients.

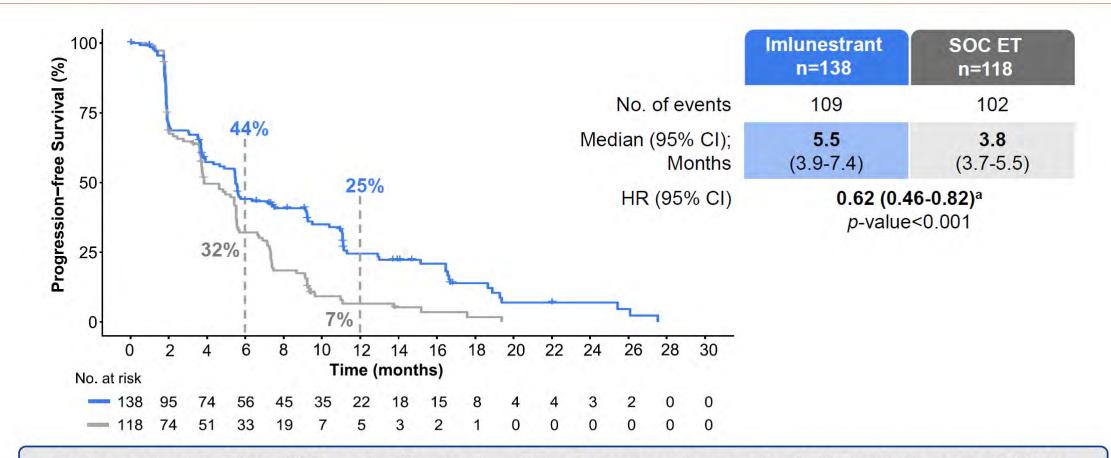
Baseline Patient Characteristics

Characteri	stic	Imlunestrant n=331	SOC ET n=330	Imlunestrant + abemaciclib n=213	Characteristic		Imlunestrant n=331	SOC ET n=330	Imlunestrant + abemaciclib n=213
Median age	e, years (range)	61 (28-87)	62 (27-89)	62 (36-87)		Visceral	57	54	56
Female, %		99	99	99	Site of	Liver	32	30	27
Post-meno	pausal, %	84	86	86	metastases, %	Bone-only	22	26	24
Race, %	White	56	58	52	Endocrine	Primary	8	11	8
	Asian	28	29	34	resistance, % ^c	Secondary	92	89	93
	Black or African American	3	2	4	Most recent	Adjuvant	32	34	30
Region, %	East Asia	25	26	31	ET, % ^d	ABC	63	63	68
	North America/ Western Europe	38	39	45	Previous	Overall	59	57	65
	Other	37	36	24	CDK4/6i, %	Adjuvant	4	5	3
PR-positive		78	79	74	,	ABC	55	53	62
ESR1 muta		42	36	32	Previous	Palbociclib	61	69	65
PI3K pathw					CDK4/6i	Ribociclib	29	27	27
mutations,	•	39	39	41	therapy, % ^e	Abemaciclib	10	4	7

Baseline characteristics were generally well balanced including in patients with ESR1mf

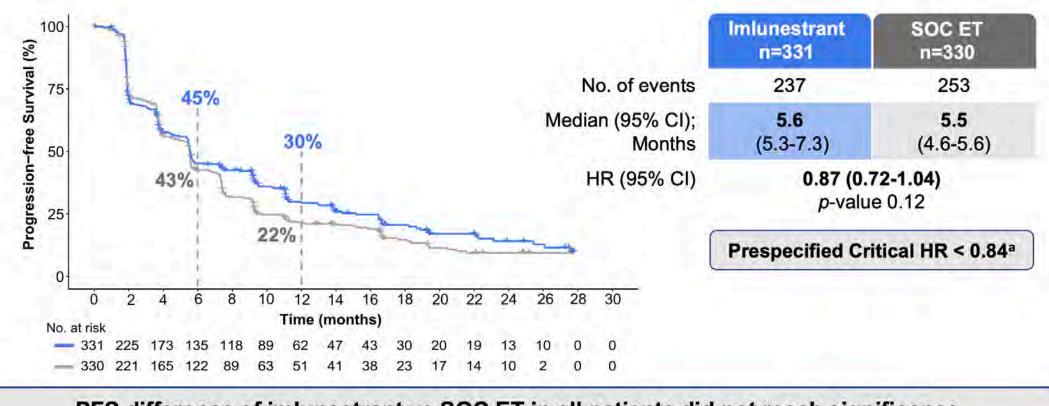
CDK4/6i, CDK4/6 inhibitor; *ESR1m*, *ESR1* mutation; ET, endocrine therapy; PR, progesterone receptor; SOC ET, standard of care endocrine therapy.^a Samples were analyzed by Guardant360 CDx, except for patients from China where samples were analyzed by OncoCompass Target assay, Burning Rock Biotech; ^b Includes single nucleotide variants and insertions/deletions of *PIK3CA*, *AKT1* or *PTEN* analyzed by Guardant 360 ctDNA assay. This analysis excludes patients from China or with unknown *ESR1*m status; ^c Per ESO-ESMO International Consensus Guidelines for ABC (ABC 6 and 7); ^d Adjuvant ET = First-line; ABC = Second-line; ^e Percentages calculated based on the numbers of patients who received prior CDK4/6i therapy (imlunestrant, n=195; SOC ET, n=189; imlunestrant + abemaciclib, n=139); ^f Data available in the online supplementary slides.

Statistical Considerations


- A graphical approach was used to control the overall type I error rate at 1-sided 0.025
- Alpha was initially assigned to the first PFS analysis of imlunestrant vs SOC ET
 - <u>0.02</u> alpha assigned to <u>patients with ESR1m</u> (192 PFS events, 97%^a power to detect a HR of 0.57)
 - 0.005 alpha assigned to all patients (480 PFS events, 76%^a and 91%^b power to detect a HR of 0.74)
- Analysis of imlunestrant + abemaciclib vs imlunestrant^c was only tested if one of the imlunestrant vs SOC ET endpoints was significant
 - 80%^b power, with 248 PFS events, to detect a target HR of 0.7
- OS was only tested if the corresponding PFS endpoint was significant

ESR1m, ESR1 mutation; HR, hazard ratio; OS, overall survival; PFS, progression-free survival; SOC ET, standard of care endocrine therapy. ^a At initial alpha; ^b At full alpha after recycling; ^c Analysis conducted in all concurrently randomized patients.

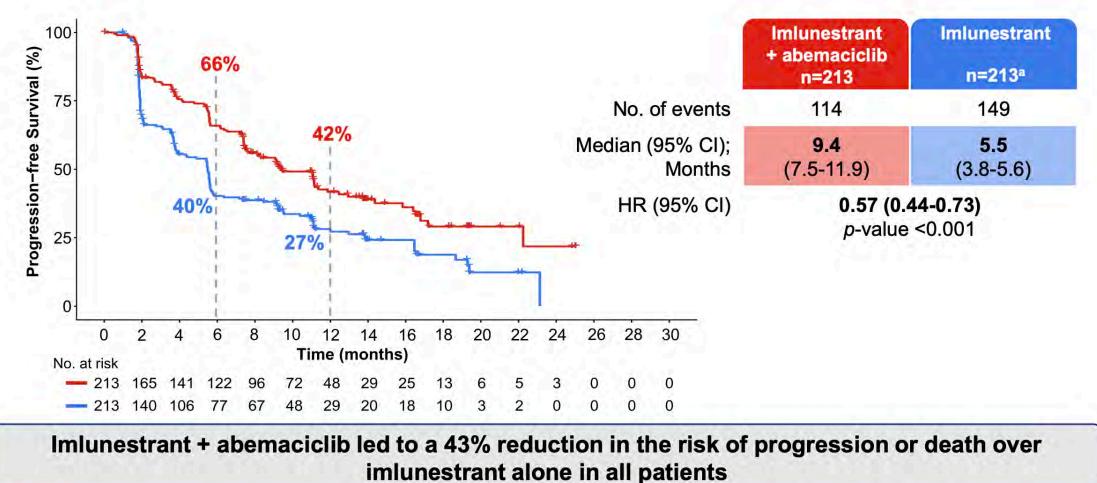
Primary endpoint: Imlunestrant vs SOC ET Investigator-assessed PFS in Patients with ESR1 mutations


Imlunestrant led to a 38% reduction in the risk of progression or death in patients with ESR1m

Cl, confidence interval; ESR1m, ESR1 mutation; HR, hazard ratio; RMST, restricted mean survival time; SOC ET, standard of care endocrine therapy. The median follow-up was 16.7 months in the imlunestrant arm and 13.8 months in the SOC ET arm. ^a Due to evidence of non-proportional hazards, a sensitivity analysis of PFS using RMST was conducted. Estimated RSMT at 19.4 months was 7.9 months (95% Cl 6.8-9.1) in the imlunestrant arm vs 5.4 months (95% Cl 4.6-6.2) in the SOC ET arm. [difference 2.6 months (1.2.-3.9)].

Primary endpoint: Imlunestrant vs SOC ET Investigator-assessed PFS in All Patients

PFS difference of imlunestrant vs SOC ET in all patients did not reach significance


The majority subgroup of patients without ESR1m showed no difference in PFS (HR=1.00; 95% CI, 0.79-1.27)^b

CI, confidence interval; ESR1m, ESR1 mutation; HR, hazard ratio; PFS, progression-free survival; SOC ET, standard of care endocrine therapy. The median follow-up was 16.6 months in the imlunestrant arm and 16.8 months in the SOC ET arm. * At full alpha; ^b Data available in the online supplementary slides.

Primary endpoint Imlunestrant + Abemaciclib vs Imnulestrant Investigator-assessed PFS in All Patients

CI, confidence interval; HR, hazard ratio. * Efficacy analyses confined to the imlunestrant population concurrently randomized to imlunestrant + abemaciclib treatment arm. The median follow-up was 13.5 months in the imlunestrant + abemaciclib arm and 13.7 months in the imlunestrant arm.

Investigator-assessed PFS by subgroup: Consistent benefit of Imlunestrant + Abemaciclib

	Imlunestra	ant + abemacicl	ib Imlunestrant			
Subgroup		No. of Eve	ents/Total No.	Hazard Ratio (95% CI)		Interaction p-value
All Patients		114/213	149/213		0.57 (0.44, 0.73)	
Age	<65 years ≥65 years	71/122 43/91	99/134 50/79		0.64 (0.47, 0.87) 0.58 (0.38, 0.87)	0.705
Region	East Asia North America/Western Europe Other	35/66 51/95 28/52	48/67 66/92 35/54		0.57 (0.36, 0.88) 0.53 (0.37, 0.77) 0.83 (0.50, 1.37)	0.370
Number of metastatic sites	1 2 ≥3	26/76 34/57 54/80	39/65 50/74 60/74		0.49 (0.30, 0.81) 0.67 (0.43, 1.03) 0.58 (0.40, 0.85)	0.744
Visceral metastasis	No Yes	44/94 70/119	61/93 88/120		0.64 (0.43, 0.94) 0.55 (0.40, 0.75)	0.439
Liver metastasis	No Yes	78/156 36/57	90/144 59/69		0.68 (0.50, 0.92) 0.47 (0.31, 0.73)	0.142
Bone-only metastasis	No Yes	95/162 19/51	124/167 25/46		0.59 (0.45, 0.78) 0.55 (0.30, 1.02)	0.849
Previous CDK4/6 inhibitor	No Yes	35/74 79/139	40/73 109/140		0.82 (0.52, 1.29) 0.51 (0.38, 0.68)	0.066
Line of therapy in advanced setting	First-line Second-line	28/63 85/149	40/61 107/150		0.55 (0.34, 0.90) 0.62 (0.47, 0.83)	0.705
ESR1 mutation status	Detected Not detected	36/67 78/146	71/92 78/121		0.53 (0.35, 0.80) 0.59 (0.43, 0.81)	0.574
PI3K pathway mutation status	Detected Not detected	55/88 53/109	70/84 73/112		0.61 (0.42, 0.87) 0.55 (0.39, 0.79)	0.628
Concurrent <i>ESR1</i> mutation and PI3K pathway mutation status	Detected Not detected	21/40 87/157	38/47 105/149		0.48 (0.28, 0.83) 0.61 (0.46, 0.81)	0.576

Favors Imlunestrant + abemaciclib Favors Imlunestrant

CI, confidence interval. First-line: most recent ET was adjuvant; Second-line: most recent ET was ABC. The total number of patients may not add up due to missing data in certain subgroups. Patients without ESR1m include 8 with unknown ESR1m status (imlunestrant + abemaciclib, n=1; Imlunestrant, n=7).

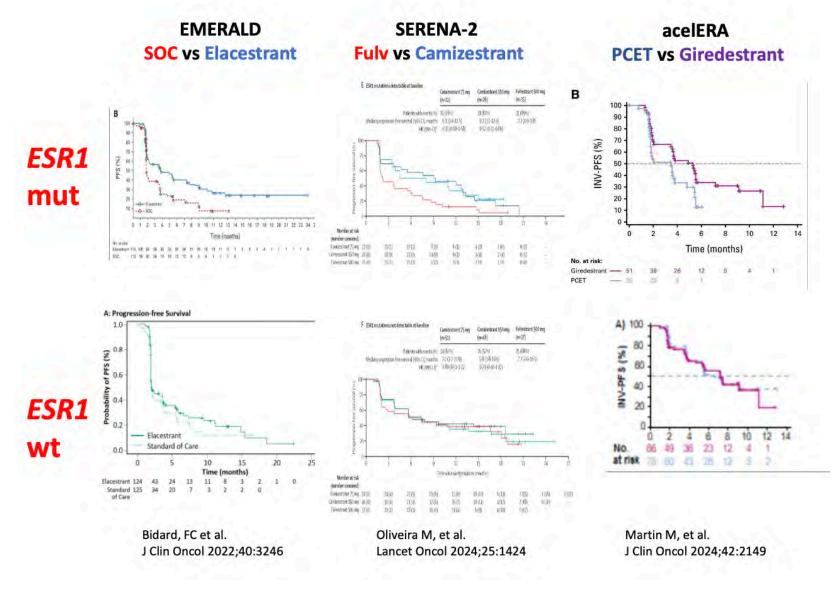
Safety

TEAEs in ≥ 10% of Patie	nts, %	Imlunestrant n=327		SOC ET n=324		
		Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Patients with ≥ '	1 TEAE	83	17	84	21	
Fatigue ^a		23	<1	13	1	
Diarrhea		21	<1	12	0	
Nausea		17	<1	13	0	
Arthralgia		14	1	14	<1	
AST increased		13	1	13	1	
Back pain		11	1	7	<1	
ALT increased		10	<1	10	1	
Anemia ^a		10	2	13	3	
Constipation		10	0	6	<1	
Patients with ≥ 1	SAE, %		10	-	12	
Dose reductions of	due to AE, %		2	0		
Discontinuations	due to AE, %		4	1		
Deaths due to AE on study, %			2	1		
Injection Site	TEAE, n/N (%)	b	NA		92 (9%)	
Reaction ^a	PRO-CTCAE, n/N (%) ^c		NA 2		01/278 (72%)	

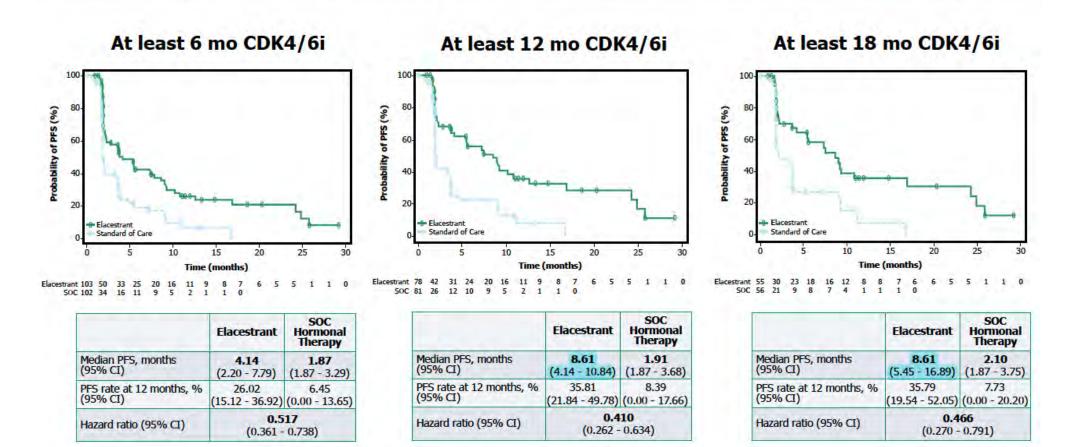
Generally favorable safety profile

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; NA, not applicable; PRO-CTAE, Patient Reported Outcomes-Common Terminology Criteria for AEs; SAE, serious
AEs; TEAE, treatment-emergent AE. a Consolidated term; b N is the number of evaluable patients who received fulvestrant; N is the number of evaluable patients who completed the PRO-CTCAE
survey (answered "yes" or "no" to injection site pain, swelling, or redness).

Safety	consistent with the known abemaciclib profile

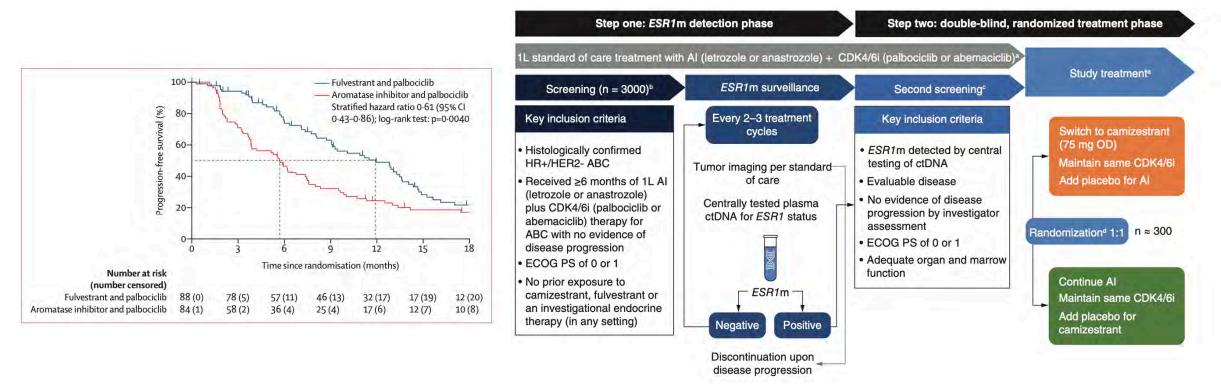

^d Dose reduction of imlunestrant alone:	
2%; abemaciclib alone: 23%; both drugs: 14%	

TEAEs in ≥ 20% of Patients, %	Imlunestrant + abemaciclii n=208		
	Any Grade	Grade ≥3	
Patients with ≥ 1 TEAE	98	49	
Diarrhea	86	8	
Nausea	49	2	
Neutropenia ^a	48	20	
Anemia ^a	44	8	
Fatigue ^a	39	5	
Vomiting	31	1	
Leukopenia ^a	26	4	
Hypercreatinemia ^a	22	1	
Abdominal pain ^a	20	2	
Decreased appetite	20	1	
Patients with ≥ 1 SAE, %		17	
Dose reductions due to AE, % ^d	39		
Discontinuations due to AE, %		6	
Deaths due to AE on study, %		1	


SERDs monotherapy efficacy according to ESR1 mutations

Patients with ESR1-mut Tumors: PFS by Duration of CDK4/6i

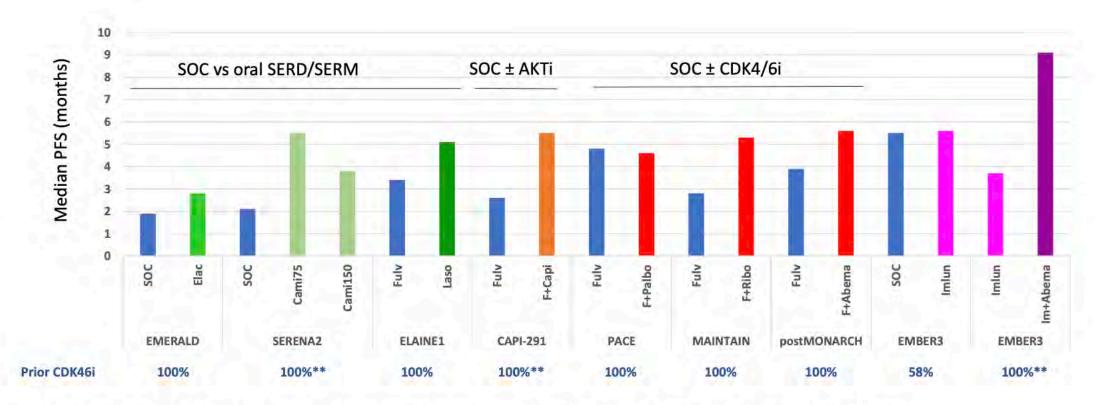
FDA & EMA approved in ESR1mut ER+ MBC with progression after at least 1 ET



Early switch based on ESR1 mutations

PADA1

SERENA 6

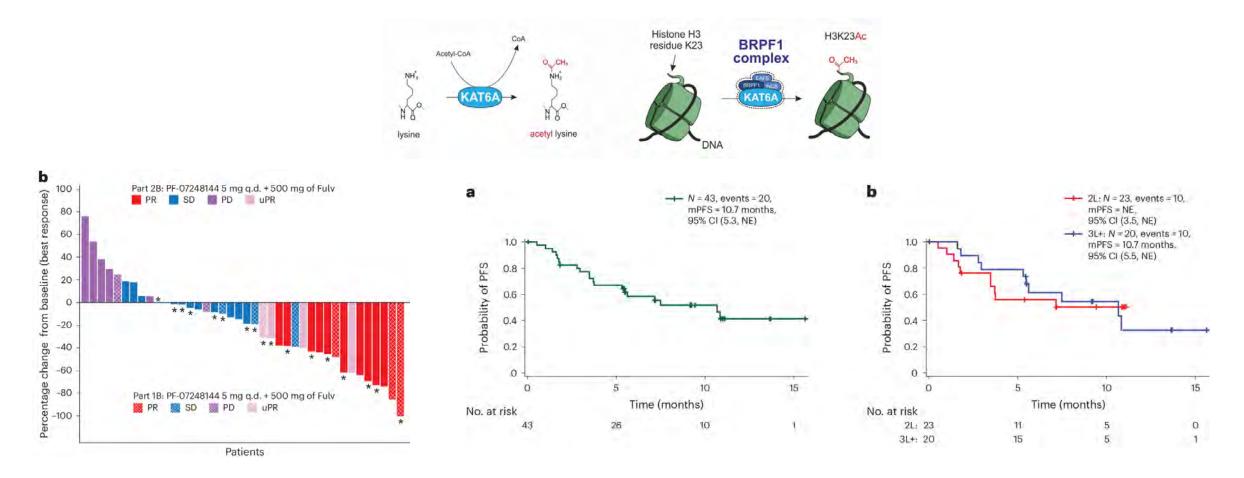

F.C. Bidard et al, Lancet Oncol 2022

N. Turner et al, Future Oncol 2023

Median Progression Free Survival in Recent Randomized Trials of Endocrine Therapy: Outcomes among patients with prior CDK4/6 inhibitor treatment*

*there are a lot of problems with cross study comparisons, especially in unplanned subset analyses: extent/types of prior therapy, variable tumor genomics/biomarker profile, SOC options, sample size, exposure vs resistance, investigator vs BICR, etc.

** Denotes subset of larger study cohort


Toxicities of PI3K/AKT inhibitors

	Alpelisib		Capivasertib		Inavolisib	
Toxicity	All grades %	Grade 3+ %	All grades %	Grade 3+%	All grades %	Grade 3+%
Diarrhea	59.5	7	72.4	9.3	48	4
Rash	36.3	10	38	12	25	NA
Hyperglycemia	64.8	37	16.2	2.3	59	6
Stomatitis	25	2.5	14.6	2	51	6
Treatment discontinuation due to adverse events	25%		13%		6.8%	

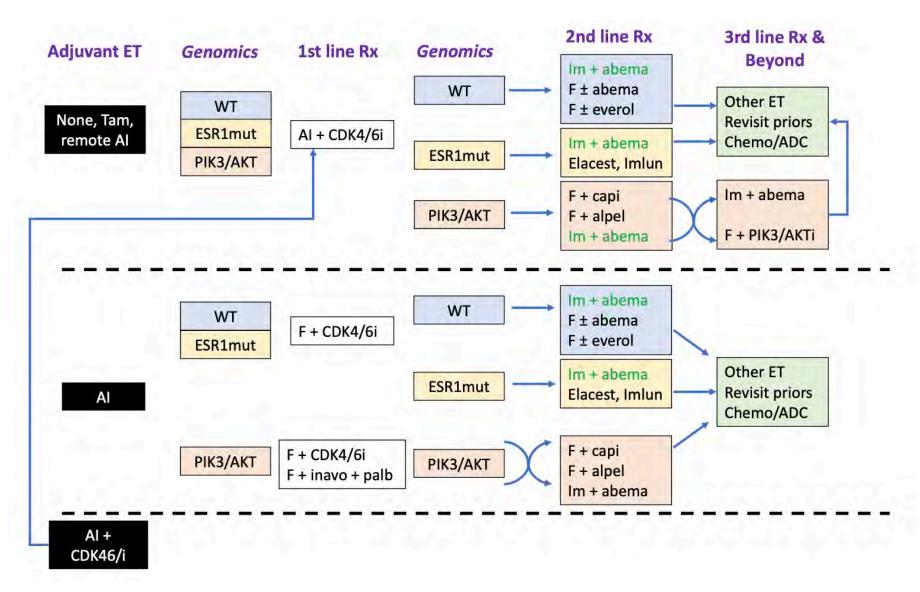
New epigenetic regulators PF- 07248144 (KAT6 inhibitor) + fulvestrant

ORR 21.7%, CBR 43.5%, mPFS 10.7 mo, response in 3/5 patinets who had prior fulvestrant

- ✓ Suboptimal control arm: How imlunestrant+abemaciclib compares with fulvestrant+ abemaciclib, fulvestrant+alpelisib, fulvestrant+ capivasertib?
- ✓ 60% of patients received prior CDK4/6inhibitor: Subgroup analysis according to prior CDK4/6inhibitor reassuring
- ✓ 60% of prior CDK4/6inhibitor was palbociclib: Not SOC any more

Strengths - messages

- ✓ Well conducted, international, phase 3 trial
- ✓ Imlunestant is a well tolerated oral SERD that is better than fulvestrant in ESR1 mutant tumors
- ✓ First study to suggest that post CDK4/6i an oral SERD (imlunestrant) can be used irrespective of ESR1 mutations when combined with abemaciclib
- Imlunestrant + abemaciclib can be a treatment option for patients with PIK3CA pathway mutated tumors



- ✓ Will there be an improvement in Overall Survival in EMBER3 with longer follow-up?
- ✓ What will be the optimal strategy in patients that have received abemaciclib/ribociclib in the adjuvant or in the 1st line metastatic setting?
- ✓ Will oral SERDs be better than SOC ET in the 1st line metastatic and adjuvant setting where ESR1 mutations are rare?

Nivolumab plus Ipilimumab in Microsatellite-Instability–High Metastatic Colorectal Cancer

Claire Gallois

Digestive Oncology Department Hôpital Européen Gorges Pompidou, Paris, France

March 19, 2025

EUROPEAN SOCIET

Meeting Abstract: 2024 ASCO Gastrointestinal Cancers Symposium

FREE ACCESS | Colorectal Cancer | January 22, 2024

🗶 in f 🖾 🙍

Nivolumab (NIVO) plus ipilimumab (IPI) vs chemotherapy (chemo) as first-line (1L) treatment for microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): First results of the CheckMate 8HW study.

Authors: Thierry Andre, Elena Elez, Eric Van Cutsem, Lars Henrik Jensen, Jaafar Bennouna, Guillermo Mendez, Michael Schenker, _ SHOW ALL _, and Sara

André et al. ASCO GI 2024

Meeting Abstract: 2024 ASCO Annual Meeting I

FREE ACCESS | Gastrointestinal Cancer-Colorectal and Anal | May 29, 2024

🗶 in f 伦 🖂 🧕

Nivolumab (NIVO) plus ipilimumab (IPI) vs chemotherapy (chemo) as first-line (1L) treatment for microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): Expanded efficacy analysis from CheckMate 8HW.

Authors: Heinz-Josef Lenz, Sara Lonardi, Elena Elez, Eric Van Cutsern, Lars Henrik Jensen, Jaafar Bennouna, Guillermo Mendez, ... SHOW ALL ..., and Thierry Andre AUTHORS INFO & AFFILIATIONS

Lenz et al. ASCO 2024

Meeting Abstract: 2025 ASCO Gastrointestinal Cancers Symposium

FREE ACCESS | Colorectal Cancer | January 27, 2025

X in f 伦 🗅 🙍

First results of nivolumab (NIVO) plus ipilimumab (IPI) vs NIVO monotherapy for microsatellite instability-high/ mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC) from CheckMate 8HW.

Authors: Thierry Andre, Elena Elez, Heinz-Josef Lenz, Lars Henrik Jensen, Yann Touchefeu, Eric Van Cutsern, Rocio Garcia-Carbonero, ... SHOW ALL ..., and Sara Lonardi AUTHORS INFO & AFFILIATIONS

André et al. ASCO GI 2025

ORIGINAL ARTICLE

Nivolumab plus Ipilimumab in Microsatellite-Instability–High Metastatic Colorectal Cancer

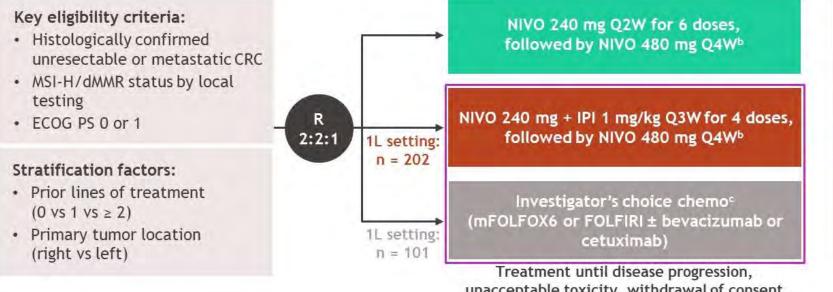
T. André, E. Elez, E. Van Cutsem, L.H. Jensen, J. Bennouna, G. Mendez, M. Schenker, C. de la Fouchardiere, M.L. Limon, T. Yoshino, J. Li, H.-J. Lenz, J.L. Manzano Mozo, G. Tortora, R. Garcia-Carbonero, L. Dahan, M. Chalabi, R. Joshi, E. Goekkurt, M.I. Braghiroli, T. Cil, E. Cela, T. Chen, M. Lei, M. Dixon, S. Abdullaev, and S. Lonardi, for the CheckMate 8HW Investigators*

André et al. NEJM 2024

Nivolumab plus ipilimumab versus nivolumab in microsatellite instability-high metastatic colorectal cancer (CheckMate 8HW): a randomised, open-label, phase 3 trial

Thierry André, Elena Elez, Heinz-Josef Lenz, Lars Henrik Jensen, Yann Touchefeu, Eric Van Cutsem, Rocio Garcia-Carbonero, David Tougeron, Guillermo Ariel Mendez, Michael Schenker, Christelle de la Fouchardiere, Maria Luisa Limon, Takayu ki Yoshino, Jin Li, Jose Luis Manzano Mozo, Laetitia Dahan, Giampaolo Tortora, Myriam Chalabi, Eray Goekkurt, Maria Ignez Braghiroli, Rohit Joshi, Timucin Cil, Francine Aubin, Elvis Cela, Tian Chen, Ming Lei, Lixian Jin, Steven I Blum, Sara Lonardi

André et al. Lancet 2025


- MSI-high/dMMR: 5% of mCRC and associated with poor outcomes with chemotherapy +/- targeted therapies
- Keynote-177: Pembrolizumab monotherapy showed improved PFS vs chemo in the 1L setting BUT primary progression: 29% of cases and for long-term outcomes →5-year PFS rate: 34%
- Phase II CheckMate-142 indirect comparisons suggested that Nivolumab + Ipilimumab provided better outcomes than Nivolumab monotherapy

CheckMate 8HW study design

Phase III trial Randomized, mulicenter, open-label

Exclusion of patients who received prior ICI

unacceptable toxicity, withdrawal of consent (all arms), or a maximum treatment duration of 2 years (NIVO and NIVO + IPI arms only) Dual primary endpoints in patients with centrally confirmed MSI-H/dMMR status^d:

- PFS by BICR^e (NIVO + IPI vs chemo in the 1L setting)
- PFS by BICR^e (NIVO + IPI vs NIVO across all lines)

Other select endpoints:

6	
to	
110	
	fe

 OS; PFS2 by investigator^e; ORR by BICR^e; PROs

• Patients in 1st line or 2nd line randomly assigned, in a 2:2:1 ratio, to receive nivo + ipi, nivo alone, or chemotherapy

• Patients in **3rd line or more** randomly assigned in a 1:1 ratio, to receive **nivo + ipilimumab, or nivo alone**

ESMO ON AIR

In the chemo group: cross-over permitted with nivo + ipi

André et al. ASCO GI 2024 Lenz et al. ASCO 2024 André et al. NEJM 2024

CheckMate 8HW Nivolumab + Ipilimumab vs chemotherapy in 1st Line

Characteristic (1L all randomized patients)	Category	NIVO + IPI (n = 202)	Chemo (n = 101)
Age	Median (range), years	62 (21-86)	65 (26-87)
	< 65 years	117 (58)	46 (46)
Sex	Male	95 (47)	45 (45)
Region	US/Canada/Europe	133 (66)	71 (70)
	Asía	19 (9)	11 (11)
	Rest of world	50 (25)	19 (19)
ECOG PS	0	111 (55)	52 (51)
Disease stage at initial diagnosis ^a	Stage IV	85 (42)	49 (49)
Tumor sidedness	Right	138 (68)	68 (67)
Sites of metastases ^{b,c,d}	Liver	76 (38)	42 (42)
	Lung	44 (22)	25 (25)
	Peritoneum	84 (42)	43 (43)
Centrally confirmed MSI-H/dMMR status	Yes	171 (85)	84 (83)
	No	31 (15)	17 (17)
Tumor cell PD-L1 expression ^{e,f}	< 1%	145 (72)	80 (79)
	≥ 1%	43 (21)	12 (12)
BRAF, KRAS, NRAS mutation status ^{f,g}	BRAF/KRAS/NRAS wild-type	47 (23)	23 (23)
	BRAF mutant	52 (26)	24 (24)
	KRAS or NRAS mutant	43 (21)	21 (21)
	Unknown	55 (27)	31 (31)
Clinical history of Lynch syndrome ^{f,h}	Yes	22 (11)	17 (17)
	No	135 (67)	49 (49)
	Reported as unknown	44 (22)	30 (30)

André et al. ASCO GI 2024; Lenz et al. ASCO 2024; André et al. NEJM 2024

CheckMate 8HW Nivolumab + Ipilimumab vs chemotherapy in 1st Line

Characteristic (1L all randomized patients)	Category	NIVO + IPI (n = 202)	Chemo (n = 101)
Age	Median (range), years	62 (21-86)	65 (26-87)
	< 65 years	117 (58)	46 (46)
Sex	Male	95 (47)	45 (45)
Region	US/Canada/Europe	133 (66)	71 (70)
	Asía	19 (9)	11 (11)
5 m m	Rest of world	50 (25)	19 (19)
ECOG PS	0	111 (55)	52 (51)
Disease stage at initial diagnosis ^a	Stage IV	85 (42)	49 (49)
Tumor sidedness	Right	138 (68)	68 (67)
Sites of metastases ^{b,c,d}	Liver	76 (38)	42 (42)
	Lung	44 (22)	25 (25)
		NIVO + IPI	Chemo
Centrally confirmed MSI-H/dMMR status		(n=202)	(n=101)
Tumor cell PD-L1 expression ^{e,f}	Previous systemic	67 (33%)	32 (32%)
BRAF, KRAS, NRAS mutation status ^{f,g}	therapy		
	Neoadjuvant	7/67 (10%)	5/32 (16%)
Clinical history of Lynch syndrome ^{f,h}	Adjuvant	60/67 (90%)	27/32 (84%)
	-		· · · ·
	Metastatic	2/67 (3%)	2/32 (6%)

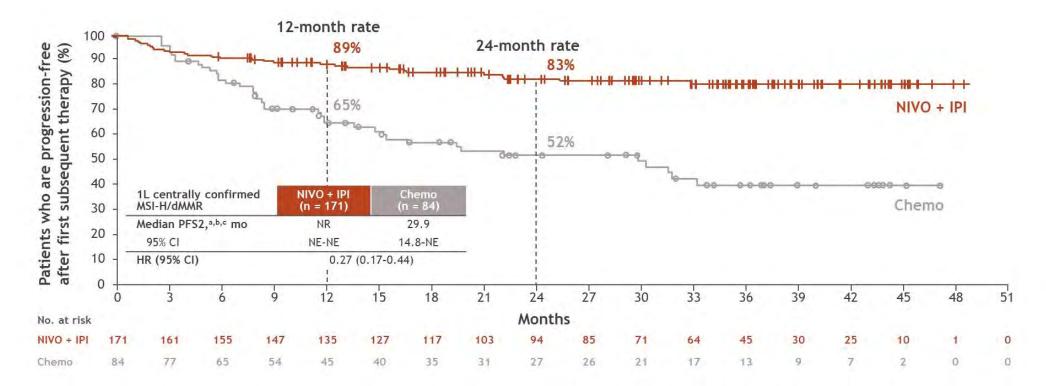
André et al. ASCO GI 2024; Lenz et al. ASCO 2024; André et al. NEJM 2024

BEST FRACTICE

E2IMIN ON AIR

CheckMate 8HW Nivolumab + Ipilimumab vs chemotherapy in 1st Line At data cutoff: median follow- up was 31.5 months (range 6.1-48.4)

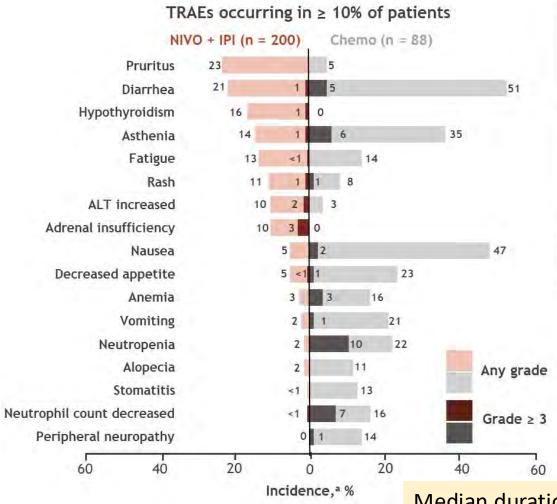
Prespecified interim analysis 1L centrally confirmed NIVO + IPI Chemo MSI-H/dMMR (n = 171)(n = 84)Median PFS, a,b mo 5.9 NR **PFS** 95% CI 38.4-NE 4.4-7.8 Progression-free survival (%) 0.21 (0.13-0.35) HR (97.91% CI) 12-month rate 24-month rate P value < 0.0001 79% 72% NIVO + IPI 21% 14% Chemo Ò Months No. at risk NIVO + IPI Chemo


André et al. ASCO GI 2024; Lenz et al. ASCO 2024; André et al. NEJM 2024

BETTER VERICIN

CheckMate 8HW Nivolumab + Ipilimumab vs chemotherapy in 1st Line

68% of patients of chemo group received ICI as subsequent treatment


PFS2 = time from randomization to progression after subsequent systemic treatment, initiation of systemic subsequent treatment or death

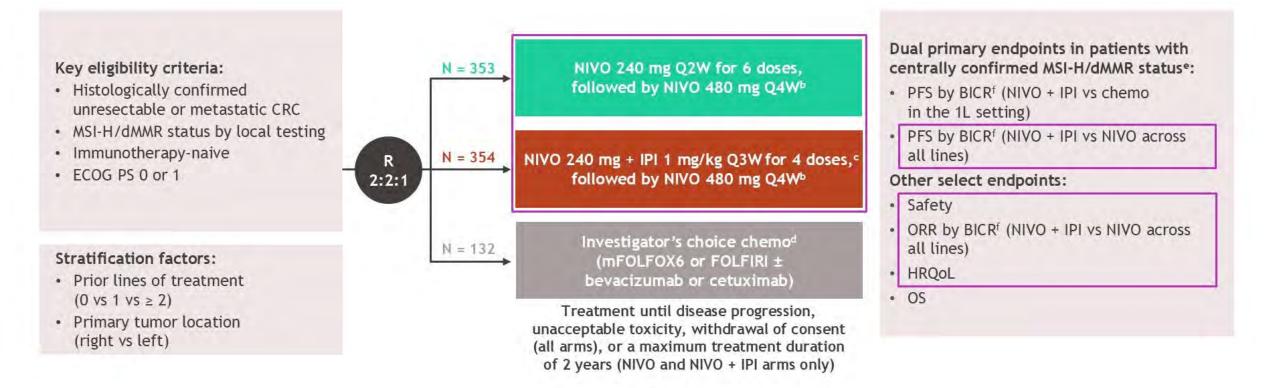
CheckMate 8HW Nivolumab + Ipilimumab vs chemotherapy in 1st Line

Treatment-related adverse events

1L all treated patients	NIVO + IPI (n = 200)		Chemo (n = 88)	
	Any grade	Grade 3/4	Any grade	Grade 3/4
TRAEs,ª n (%)				
Any TRAEs	160 (80)	46 (23)	83 (94)	42 (48)
Serious TRAEs	38 (19)	32 (16)	17 (19)	14 (16)
TRAEs leading to discontinuation	33 (17)	23 (12)	28 (32)	9 (10)
Treatment-related deaths, n (%)	2 (1) ^b		0 (0) ^c	

 Any-grade and grade 3/4 TRAEs were less frequent in the NIVO + IPI arm than in chemo arm

- The most common any-grade TRAEs occurring in ≥ 10% of patients were:
 - NIVO + IPI: pruritis (23%), diarrhea (21%), and hypothyroidism (16%)
 - Chemo: diarrhea (51%), nausea (47%), and asthenia (35%)

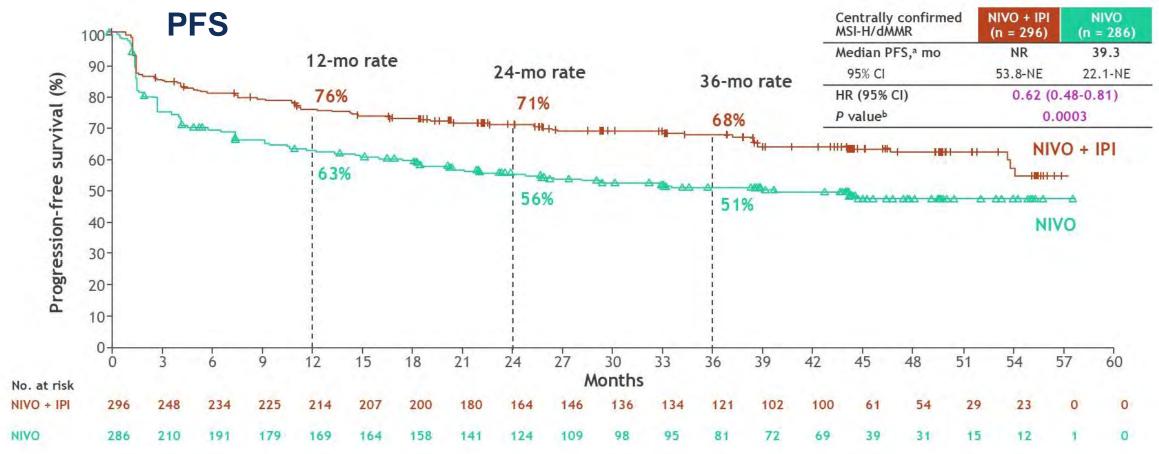

Median duration of treatment: 13.5 months (nivo+ipi) vs 4 months (chemo)

André et al. ASCO GI 2024; Lenz et al. ASCO 2024; André et al. NEJM 2024

CheckMate 8HW Nivolumab + Ipilimumab vs Nivolumab across all lines

Characteristic (all randomized patients)	Category	NIVO + IPI (n = 354)	NIVO (n = 353)
Age	Median (range), years	62 (21-86)	63 (20-87)
Sex	Female	192 (54)	163 (46)
	Male	162 (46)	190 (54)
Region	US/Canada/Europe	251 (71)	246 (70)
	Asia	26 (7)	33 (9)
	Rest of world	77 (22)	74 (21)
COG PS	0	192 (54)	183 (52)
Disease stage at initial diagnosisª	Stage IV	152 (43)	158 (45)
Number of prior lines of therapy per IRT	0	202 (57)	201 (57)
	1	67 (19)	67 (19)
	≥ 2	85 (24)	85 (24)
Fumor sidedness	Right	244 (69)	244 (69)
Sites of metastases ^{b-d}	Liver	140 (40)	149 (42)
	Peritoneum	143 (40)	126 (36)
Centrally confirmed MSI-H/dMMR status	Yes	296 (84)	286 (81)
	No	58 (16)	67 (19)
	MSS and pMMR	41 (12)	40 (11)
	MSS or pMMR ^e	8 (2)	10 (3)
	Not available ^f	9 (3)	17 (5)
Fumor cell PD-L1 ^{g,h}	< 1%	255 (72)	264 (75)
	≥ 1%	74 (21)	63 (18)
BRAF, KRAS, NRAS mutation status ^{g,i}	BRAF/KRAS/NRAS all wild type	83 (23)	103 (29)
	BRAF mutant	106 (30)	85 (24)
	KRAS or NRAS mutant	83 (23)	89 (25)
	Unknown	73 (21)	74 (21)
Clinical history of Lynch syndrome ^{g,j}	Yes	48 (14)	49 (14)
	No	217 (61)	207 (59)
	Reported as unknown	86 (24)	91 (26)

Centrally confirmed MSI-H/dMMR	NIVO + IPI (n = 296)	NIVO (n = 286)		
ORR,ª % (95% CI)	71 (65-76)	58 (52-64)		
Difference in ORR, ^b % (95% CI) P value ^c	13 (5 0.0	5-21) 0011		
Best overall response, ^{a,d} %				
Complete response	30	28		
Partial response	40	30		
Stable disease	14	19		
Progressive disease	10	19		
Median TTR (range), ^{a,e} mo	2.8 (1.2-44.5)	2.8 (1.2-29.5)		
Median DOR (95% CI), ^{a,e} mo	NR (NE)	NR (NE)		



Disposition	NIVO + IPI	NIVO.		
All randomized patients, n	354	353		
All treated patients, n	352	351		
Ongoing treatment, a n (%)	20 (6)	13 (4)		
Completed treatment, ^{a,b} n (%)	159 (45)	137 (39)		
Discontinued treatment, a n (%)	173 (49)	201 (57)		
Disease progression	82 (23)	137 (39)		
AE related to treatment	48 (14)	28 (8)		
AE not related to treatment	22 (6)	28 (8)		
Other ^c	21 (6)	8 (2)		
Median duration of treatment (range), ^d mo	20.5 (0-35.9) ^e	16.4 (0-36.0)		
Madler sumber of desce (second)d	NIVO: 23 (1-41)	NIVO: 21 (1-43)		
Median number of doses (range) ^d	IPI: 4 (1-4)			
Received all 4 doses of IPI,ª n (%)	288 (82)	Proj.		
Death,ª n (%)	103 (29)	149 (42)		
Disease progression	74 (21)	122 (35)		
Other ^f	29 (8)	27 (8)		

Prespecified interim analysis

median follow-up: 47 months (range 16.7 - 60.5)

André et al. ASCO GI 2025; André et al. Lancet 2025

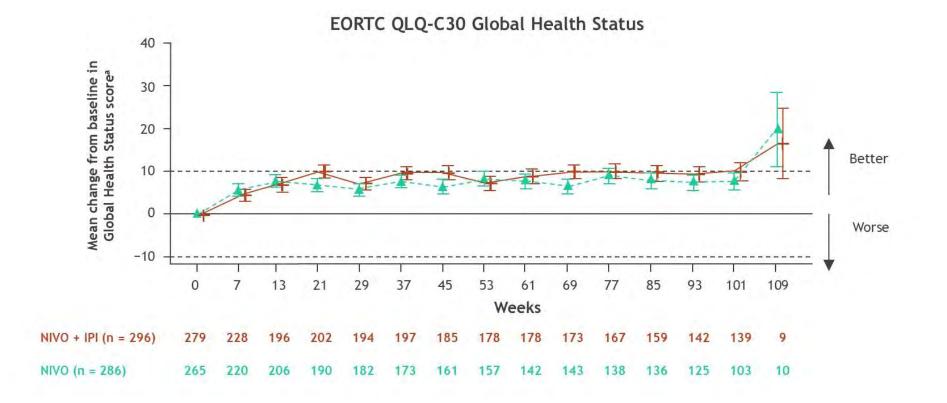
PFS subgroup analysis

Category (centrally confirmed MSI-H/dMMR)	Userse	Median PFS, ^a mo			
	Subgroup	NIVO + IPI	NIVO	Unstratified HR	Unstratified HR (95% CI)
Overall (N = 582)		NR	39.3	0.63	
Age, years	< 65 (n = 321)	NR	NR	0.60	
	≥ 65 (n = 261)	NR	29.4	0.66	
Sex	Male (n = 284)	NR	28.2	0.60	
	Female (n = 298)	NR	NR	0.67	
Region	US/Canada/Europe (n = 415)	NR	29.4	0.63	
	Asia (n = 52)	NR	NR	0.40	· · · · · · · · · · · · · · · · · · ·
	Rest of world (n = 115)	NR	NR	0.73	· · · · · · · · · · · · · · · · · · ·
ECOG PS	0 (n = 313)	54.1	NR	0.69	
	1 (n = 269)	NR	18.2	0.60	
	Left (n = 152)	NR	NR	0.62	
	Right (n = 430)	NR	33.2	0.64	(
Liver metastases ^{a,b}	Yes (n = 210)	NR	NR	0.68	
	No (n = 368)	NR	33.2	0.60	I
Peritoneal metastases ^{a,b}	Yes (n = 226)	54.1	24.8	0.55	
	No (n = 352)	NR	NR	0.67	
Tumor cell PD-L1 expression	≥ 1% (n = 133)	NR	NR	0.77	
	< 1% (n = 427)	NR	24.8	0.57	
BRAF/KRAS/NRAS mutation	BRAF/KRAS/NRAS all wild type (n = 156)	NR	44.3	0.64	
status	BRAF mutant (n = 179)	NR	25.9	0.62	
	KRAS or NRAS mutant (n = 125)	NR	NR	0.76	· · · · · · · · · · · · · · · · · · ·
	Unknown (n = 114)	54.1	38.1	0.48	· · · · · · · · · · · · · · · · · · ·
Clinical history of Lynch	Yes (n = 83)	53.8	38.1	0.90	• <u>• • • •</u>
syndrome	No (n = 334)	NR	44.3	0.56	
	Unknown (n = 156)	NR	33.2	0.71	· · · · · · · · · · · · · · · · · · ·

PFS consistently favored NIVO + IPI vs NIVO in prespecified subgroups across all lines of therapy

Immune-related Adverse Events

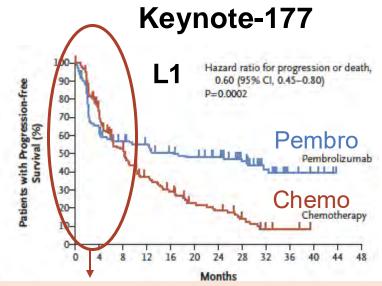
And the American American Street	NIVO (n =	NIVO (n = 351)		
IMAEs ^a (all treated patients), n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4
Non-endocrine events				
Rash	23 (7)	5 (1)	20 (6)	3 (< 1)
Diarrhea/colitis	21 (6)	12 (3)	13 (4)	8 (2)
Hepatitis	13 (4)	6 (2)	4 (1)	3 (< 1)
Pneumonitis	7 (2)	4 (1)	7 (2)	4 (1)
Nephritis and renal dysfunction	6 (2)	2 (< 1)	1 (< 1)	1 (< 1)
Hypersensitivity	0	0	3 (< 1)	0
Endocrine events				
Hypothyroidism/thyroiditis	62 (18)	3 (< 1)	33 (9)	0
Hyperthyroidism	42 (12)	0	16 (5)	0
Adrenal insufficiency	35 (10)	10 (3)	12 (3)	3 (< 1)
Hypophysitis	23 (7)	11 (3)	4 (1)	4 (1)
Diabetes mellitus	4 (1)	2 (< 1)	2 (< 1)	1 (< 1)


Treatment-related deaths: N= 2 in Nivo + Ipi group (myocarditis + pneumonitis) and N= 1 ni Nivo group (pneumonitis)

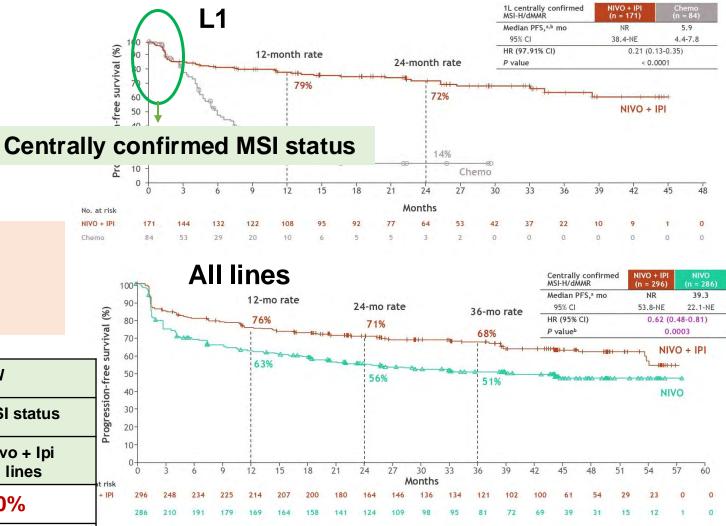
André et al. ASCO GI 2025; André et al. Lancet 2025

Health-related Quality Of Life

André et al. ASCO GI 2025; André et al. Lancet 2025


Summary CheckMate 8HW Nivo + Ipi vs Nivo

Positive phase III trial


- Nivo + Ipi demonstrated statistically significant and clinically meaningful improvement in PFS vs Nivo monotherapy in patients with centrally confirmed MSI-H/dMMR mCRC across all lines of therapy (HR: 0.62, p=0.0003)
- Consistent PFS benefit across subgroups
- Better ORR with Nivo + Ipi vs Nivolumab (71% vs 58%, p=0.001)
 Primary resistance in only 10% of pts with Nivolumab +Ipilimumab vs 19% in Nivolumab group
- Limits:
 - ➤ Efficacy by line of therapy unknown → the outcomes might be driven by patients in 1st Line (57% in both arms)
 - No data on OS (immature data)

Nivolumab + Ipilimumab or Pembrolizumab/Nivolumab monotherapy?

CheckMate 8HW

• Truly primary resistant pts

+ MSI misdiagnosed pts (%age? 13% in CM 8HW)

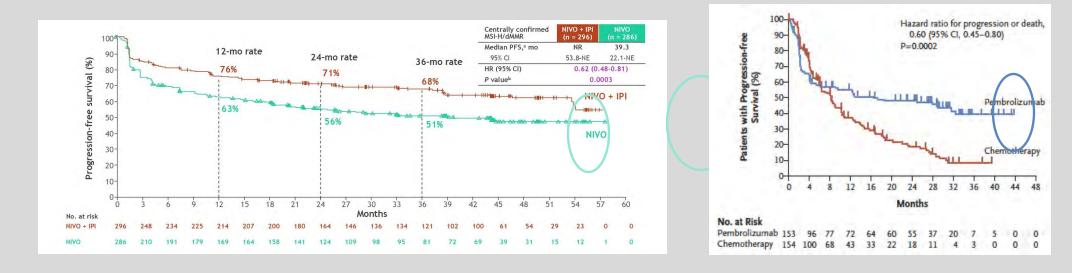
MSI local testing

+/-pseudoprogression

	Keynote-177	CheckMate 8HW			
	MSI local testing	Centrally confirmed MSI status			
	Pembro 1L	Nivo + Ipi 1L	Nivo all lines	Nivo + Ipi all lines	
Primary progression	29%	-	19%	10%	
24-month PFS	55%	72%	56%	71%	

André et al. NEJM 2020; André et al. NEJM 2024; André et al. Lancet 2025

Nivolumab + Ipilimumab or Pembrolizumab/Nivolumab monotherapy?


Combotherapy a little bit more toxic (G3/4 AEs 22% vs 14% with Nivo)

• Higher rates of endocrine AEs

 \rightarrow 7% hypophysitis, 10% adrenal insuffisency, 18% hypothyroidism, 12% hyperthyroidism but **very rarely grade 3-4** and presumably **manageable** with hormonal supplementation

- without impacting QoL
- Higher rate of discontinuation of ttt related to AEs, although pts were able to continue with nivo alone

~ 35-50% of patients: long-term responders to nivo/pembro and possibly already « cured »

BUT

Nivolumab + Ipilimumab or Pembrolizumab/Nivolumab monotherapy?

Nivolumab + Ipilimumab

Potential new standard of care in MSI-high patients

Perspectives:

Select the patient subgroups who <u>truly</u> benefit from the intensification of immunotherapy and are therefore exposed to more toxicities (study of the tumor microenvironment, transcriptomic data, etc...)

