

Non-metastatic non-small-cell lung cancer

ESMO DEEP DIVE WEBINAR SERIES: LUNG CANCER

Enriqueta Felip, Chair

Vall **d'Hebron** Institute of Oncology (VHIO)

Spain

EUROPEAN SOCIET

Programme

5 March 2025	
5 min	Welcome and introduction
	Enriqueta Felip
15 min	Surgery – controversies and challenges (e.g. Pancoast, N2)
	Jonathan Spicer
15 min	Radiation – opportunities, future directions
	Corinne Finn
15 min	Systemic therapy – key challenges moving from trials into practice
	Federico Cappuzzo
15 min	QnA and Discussion
	All speakers

Enriqueta Felip

Chair Vall d'Hebron University Hospital Vall d'Hebron Institute of Oncology (VHIO) Barcelona

Jonathan Spicer Speaker McGill University

Corinne Faivre-Finn University of Manchester

Federico Cappuzzo Speaker

Learning objectives

- To acquire a deeper understanding of the clinical course of lung cancer.
- To understand biological hypotheses on classification and risk stratification, ongoing/required research in therapeutics and knowledge of use of omics technologies for biomarker-enabled precision medicine for lung cancer.
- To develop skills and abilities for critical analysis, interpretation of research data and therapeutic strategies.
- To become better equipped for informed, innovative thinking and engagement in ongoing or new research projects.

ESMO DEEP DIVE: LUNG CANCER

SURGERY – CONTROVERSIES AND CHALLENGES

Jonathan Spicer, MD PhD

McGill University Health Center, Montreal, Canada

CONFLICTS OF INTEREST

Commercial Interest	Relationship(s)
AstraZeneca, Merck, Roche, BMS, Novartis, Chemocentryx, Amgen, Protalix Biotherapeutics, Xenetic Biosciences, Regeneron, Eisai, Peerview, OncLive, Medscape, Pfizer	Consulting, advisory role or honoraria
AstraZeneca, BMS, Merck, Roche, CLS Therapeutics, Protalix Biotherapeutics, Pfizer, Regeneron	Grant to institution
BMS, Novartis, Roche, Merck, AstraZeneca	Clinical trial leadership role

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer

P.M. Forde, J. Spicer, S. Lu, M. Provencio, T. Mitsudomi, M.M. Awad, E. Felip, S.R. Broderick, J.R. Brahmer, S.J. Swanson, K. Kerr, C. Wang, T.-E. Ciuleanu, G.B. Saylors, F. Tanaka, H. Ito, K.-N. Chen, M. Liberman, E.E. Vokes, J.M. Taube, C. Dorange, J. Cai, J. Fiore, A. Jarkowski, D. Balli, M. Sausen, D. Pandya, C.Y. Calvet, and N. Girard, for the CheckMate 816 Investigators*

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Overall Survival with Osimertinib in Resected EGFR-Mutated NSCLC

Masahiro Tsuboi, M.D., Roy S. Herbst, M.D., Ph.D., Thomas John, M.B., B.S., Ph.D., Terufumi Kato, M.D., Margarita Majem, M.D., Ph.D., Christian Grohé, M.D., Jie Wang, M.D., Ph.D., Jonathan W. Goldman, M.D., Shun Lu, M.D., Wu-Chou Su, M.D., Filippo de Marinis, M.D., Frances A. Shepherd, M.D., Ki Hyeong Lee, M.D., Ph.D., Nhieu Thi Le, M.D., Arunee Dechaphunkul, M.D., Dariusz Kowalski, M.D., Ph.D., Lynne Poole, M.Sc., Ana Bolanos, M.D., Yuri Rukazenkov, M.D., Ph.D., and Yi-Long Wu, M.D., for the ADAURA Investigators*

Neoadjuvant pembrolizumab plus chemotherapy followed by adjuvant pembrolizumab compared with neoadjuvant chemotherapy alone in patients with early-stage non-small-cell lung cancer (KEYNOTE-671): a randomised, double-blind, placebo-controlled, phase 3 trial

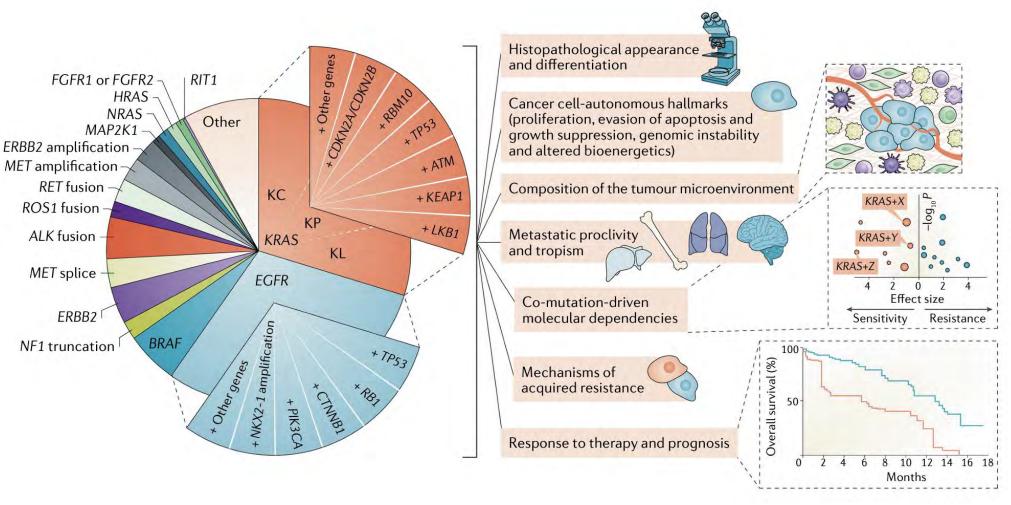
Jonathan D Spicer*, Marina C Garassino*, Heather Wakelee, Moishe Liberman, Terufumi Kato, Masahiro Tsuboi, Se-Hoon Lee, Ke-Neng Chen, Christophe Dooms, Margarita Majem, Ekkehard Eigendorff, Gastón L Martinengo, Olivier Bylicki, Delvys Rodríguez-Abreu, Jamie E Chaft, Silvia Novello, Jing Yang, Ashwini Arunachalam, Steven M Keller, Ayman Samkari, Shugeng Gao, on behalf of the KEYNOTE-671 Investigators†

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

APRIL 11, 2024

VOL. 390 NO. 14


Alectinib in Resected ALK-Positive Non-Small-Cell Lung Cancer

Yi-Long Wu, M.D., Rafal Dziadziuszko, M.D., Ph.D., Jin Seok Ahn, M.D., Ph.D., Fabrice Barlesi, M.D., Ph.D., Makoto Nishio, M.D., Ph.D., Dae Ho Lee, M.D., Ph.D., Jong-Seok Lee, M.D., Ph.D., Wenzhao Zhong, M.D., Ph.D., Hidehito Horinouchi, M.D., Ph.D., Weimin Mao, M.D., Ph.D., Maximilian Hochmair, M.D., Filippo de Marinis, M.D., M. Rita Migliorino, M.D., Igor Bondarenko, M.D., Ph.D., Shun Lu, M.D., Qun Wang, M.D., Tania Ochi Lohmann, Ph.D., Tingting Xu, M.D., Andres Cardona, M.Sc., Thorsten Ruf, M.D., Johannes Noe, Ph.D., and Benjamin J. Solomon, M.B., B.S., Ph.D., for the ALINA Investigators*

Early-stage landscape has now changed forever...

NSCLC IS A COLLECTION OF MOLECULARLY-DEFINED RARE DISEASES: IO VS TARGETS VS BOTH?

Skoulidis & Heymach, Nat Rev Cancer, 2019

ESMO DEEP DIVE: LUNG CANCER

Working at the therapeutic interface of the tumor immune microenvironment and a complex genomic landscape

ATTITUDES TO SHIFTING STANDARDS

SPECIAL ARTICLE

Neoadjuvant and Adjuvant Treatments for Early Stage Resectable NSCLC: Consensus Recommendations From the International Association for the Study of Lung Cancer Jonathan D. Spicer, MD, PhD,^a Tina Cascone, MD, PhD,^b Murry W. Wynes, PhD,^c Myung-Ju Ahn, MD, PhD,^d Sanja Dacic, MD, PhD,^e Enriqueta Felip, MD, PhD,^f Patrick M. Forde, MD, PhD,^g Kristin A. Higgins, MD,^h Mark G. Kris, MD,ⁱ Tetsuya Mitsudomi, MD, PhD,^{j,k} Mariano Provencio, MD, PhD,^l Suresh Senan, MD, PhD,^m Benjamin J. Solomon, M.B.B.S., PhD,ⁿ Ming Sound Tsao, MD,^o Masahiro Tsuboi, MD,^p Heather A. Wakelee, MD,^q Yi-Long Wu, MD,^r James Chih-Hsin Yang, MD, PhD,^s Caicun Zhou, MD, PhD,^t David H. Harpole, MD,^u Karen L. Kelly, MD^{c,*}

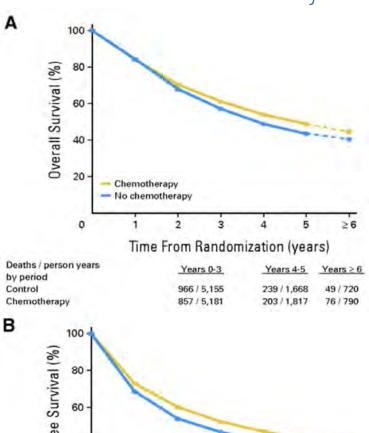
Recommendation 7	Neoadjuvant chemoimmunotherapy is strongly preferred to upfront surgery for medically operable patients with resectable clinical stage IIIA or IIIB NSCLC at first presentation, irrespective of PD-L1 expression level.	94	79
Recommendation 15	Neoadjuvant chemoimmunotherapy followed by surgery is preferred to upfront surgery for medically operable patients with technically resectable clinical stage II NSCLC at first presentation, regardless of PD-L1 expression level.	65	55

IASLC

Check for updates

ESMO DEEP DIVE: LUNG CANCER

NEOADJ/PERIOP CHEMO-IO IMPROVES EFS IN STAGE II


Stage II					
Forde 2022%	Stage II	65	62		0.87 [0.48; 1.56]
Wakelee 2023	Stage II	118	121		0.59 [0.40; 0.88]
Heymach 2023	Stage II	104	110	-	0.76 [0.43; 1.34]
Cascone 2023	Stage II	81	81		0.81 [0.46; 1.43]
Random effects mo	odel	368	374	-	0.71 [0.55; 0.92]
Heterogeneity: $I^2 = 0^{\circ}$	%, $T^2 = < 0.1$, $p = 0.68$				
Stage III					
Forde 2022	Stage III	113	115		0.54 [0.37; 0.80]
Wakelee 2023a	Stage III	217	224		0.57 [0.44; 0.74]
Wakelee 2023b	Stage III	62	55		0.57 [0.36; 0.90]
Heymach 2023a	Stage III	173	165		0.57 [0.39; 0.83]
Heymach 2023b	Stage III	88	98		0.83 [0.52; 1.32]
Provencio 2023	Stage III	57	29		0.47 [0.25; 0.88]
Lu 2023	Stage III	202	202		0.39 [0.27; 0.57]
Cascone 2023	Stage III	146	149		0.51 [0.36; 0.72]
Random effects mo	odel	1058	1037	•	0.54 [0.48; 0.62]
Heterogeneity: $I^2 = 0^{\circ}$	%, $\tau^2 = < 0.1$, $p = 0.47$				
					Sorin et al, JAMA Onc 2024

0.2 0.5 1 2 5 Favors Chemo-IO Favors Chemo

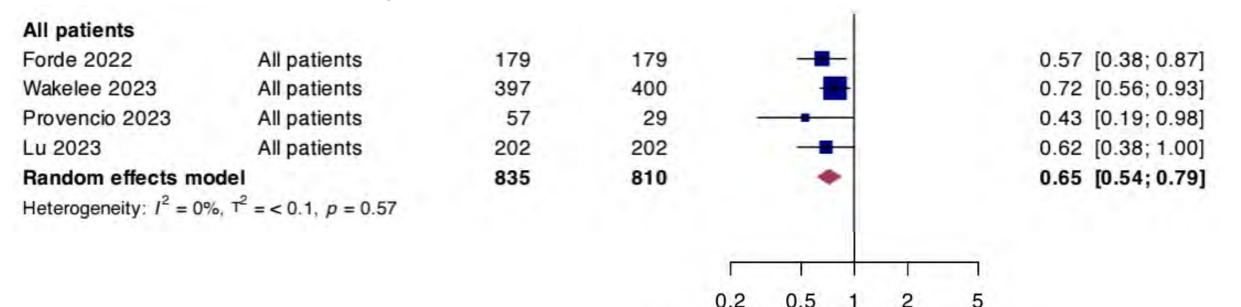
ESMO WEBINAR SERIES

HOW QUICKLY WE FORGET...

Basis for the SoC of adjuvant chemotherapy: LACE meta analysis w/ HR 0.83

40 -			-	-	-	
20 -		erapy				
	 Chemoth 					
	 Chemoth No chemoth 					

Time From Randomization (years)

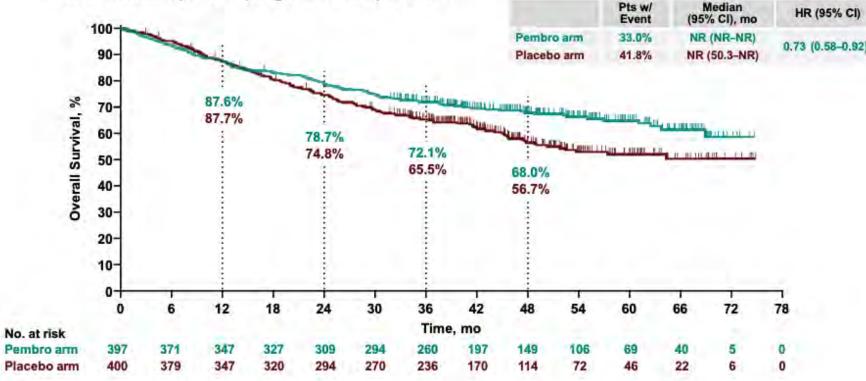

Events / person years	Years 0-3	Years 4-5	Years ≥ 6
by period Control	1,222 / 4,341	163/1,396	35/610
Chemotherapy	1,047 / 4,627	159/1,606	59/708

		Overall S	Survival			Disea	se-Free Surviva	al
Category	No. Events /	No. Patients	Hazard Ratio	Probability of interaction/ trend* test	No. Events	s / No. Patients	Hazard Ratio	Probability of interaction/ trend* test
ASSOCIATED DRUGS	7.5			.11	6.m.			.07
Cisplatin + vinorelbine	935	1,888			1,077	1,888	-	
Cisplatin + 1 other drug	742	1,373	-		824	1,373		
Cisplatin + 2 other drugs		1,323			784	1,323		
PLANNED DOSE OF CISPI		202	- <u>i</u>	.26	100	202		.22
< 300 mg/m ³	186	307		.13*	193	307		.09*
300 mg/m ²	985	1,903	TT		1,091	1,903		
> 300 mg/m ²	1,219	2,374			1,401	2,374		
PLANNED RT		24.15	1.1	.34	4 070	2.1.15		.35
No RT planned	1,464	3,145			1,670	3,145		
RT planned	926	1,439			1,015	1,439		
SEX Male	1,994	3,685		.79	2,211	3,685		.33
Female	395	895			473	895 -		
AGE	335	030		22	4/3	635		10
< 50	319	701		.83	384	701 -		.48
50-59	795	1,558		.63*	900	1,558		.16*
60-69	1,031	1,911			1,137	1,911		
≥70	245	414			264	414		
PERFORMANCE STATUS		414	- 19		204	414	1	.03
PS = 0	881	1,769		.01	992	1,769		
PS = 1	829	1,533		* 600	930	1,533		.01*
PS = 2	108	183			123	183		
HISTOLOGY	100	105			123	105	12	
Squamous cell	1,124	2,231		_44	1,250	2,231		.31
Adenocarcinoma	971	1,817	-		1,115	1,817		
Other	140	257			152	257	1	
STAGE		201		.06			3	.08
Stage IA	104	347	+		122	347		04*
Stage IB	515	1,371		.04 -	612	1,371		102
Stage II	893	1,616			999	1,616		1 S S S S S
Stage III	878	1,247			952	1,247		
TYPE OF SURGERY			- 4	.39			1	.43
Pneumonectomy	783	1,346		1.25	848	1,346		
Other type of surgery	1,420	2,926			1,643	2,926		
		0.5		2.0		0.5	,	
		0.5	1.0	2.0		0.5	1.0	2.0
	Chemo	otherapy Be	tter Co	ontrol Better	Che	motherapy Be	etter Cor	ntrol Better

NEOADJ/PERIOP CHEMO-IO IMPROVES OS!

Neoadj/periop improves OS in ITT population (N=1645 pts)

Favors Chemo-IO Favors Chemo

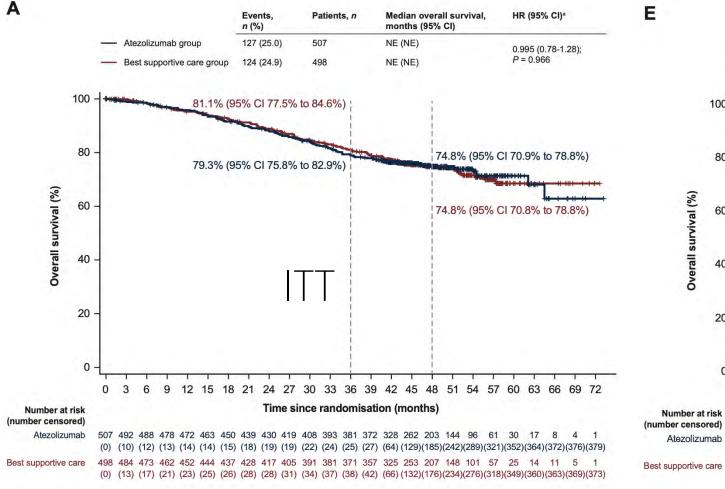

Sorin et al, JAMA Onc 2024

ESMO WEBINAR SERIES

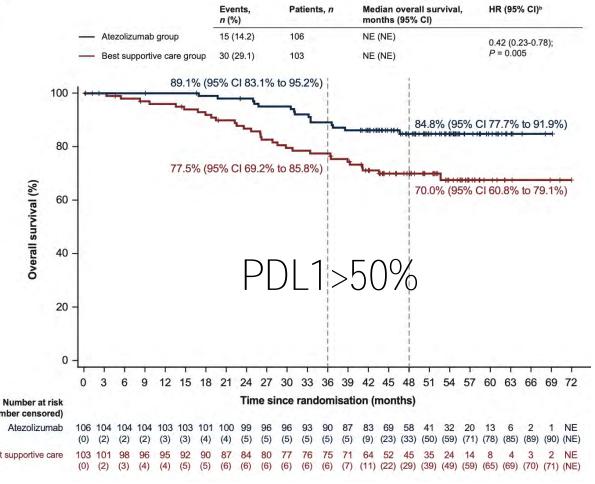
KN671 - FIRST NEOADJ/PERIOP TO SHOW OS BENEFIT IN ITT

Overall Survival

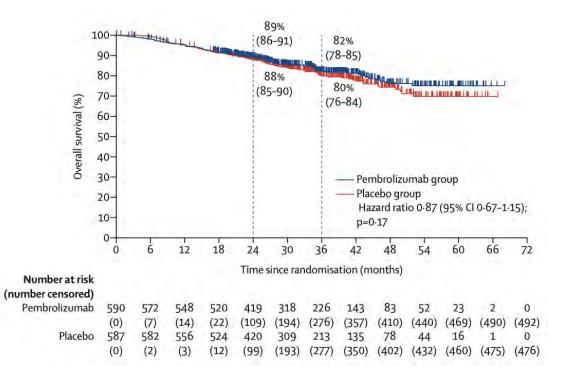
Median Follow-Up: 41.1 (range, 0.4-75.3) months

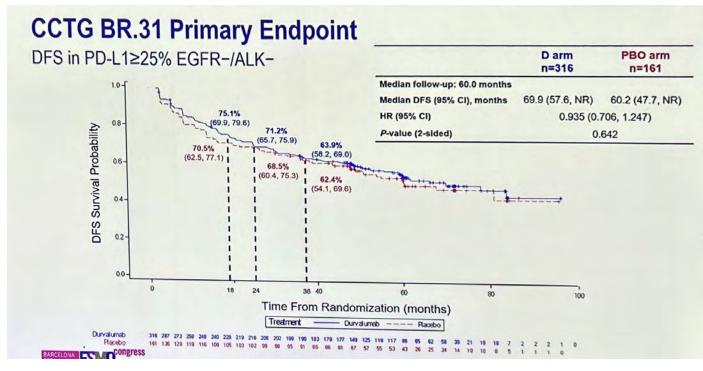

Data cutoff date: August 19, 2024.

Majem et al, ESMO-IO 2024


ESMO DEEP DIVE: LUNG CANCER

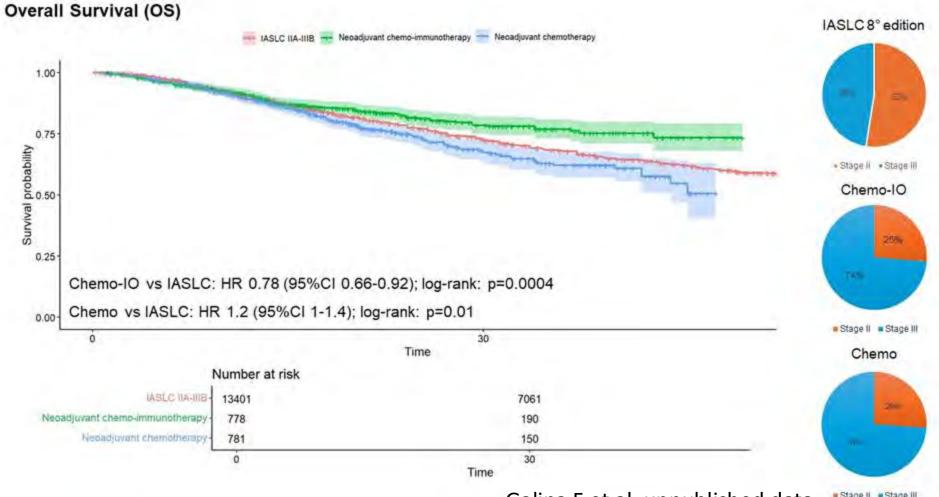
WHAT'S THE DATA ON OS FOR ADJUVANT IO?


ESMO DEEP DIVE: LUNG CANCER



Felipe et al , Ann Onc 2023 ESMO WEBINAR SERIES

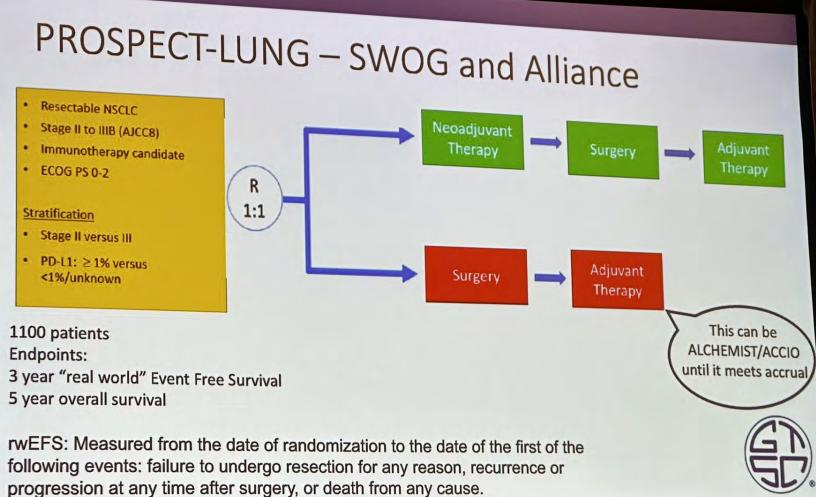
OS IMPROVEMENT WITH ADJUVANT IO LACKS PROMISE


O'Brien et al, Lancet Oncol 2022

Goss et al, ESMO 2024

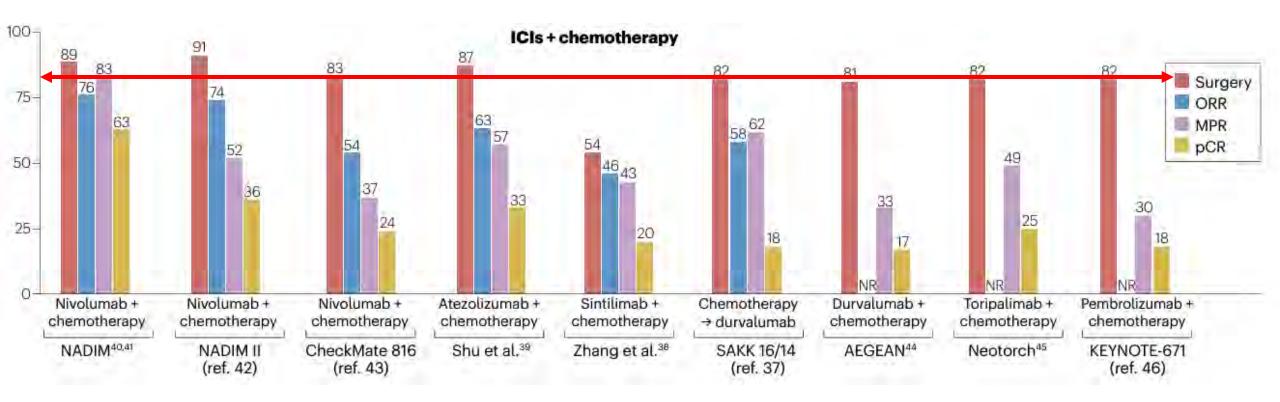
ESMO DEEP DIVE: LUNG CANCER

HARD FOR UP-FRONT SURGERY TO SURPASS NEOADJ/PERI-OP


Galina F et al, unpublished data

Stage II Stage III

ESMO DEEP DIVE: LUNG CANCER


EQUIPOISE STILL EXISTS IN THE FIELD

ESMO DEEP DIVE: LUNG CANCER

BUT WHAT ABOUT ATTRITION TO SURGERY?

Mountzios, Nat Rev Clin Onc, 2023

ESMO WEBINAR SERIES

Surgical attrition in neoadj trial pts @ McGill

AcGill

- 24 pts enrolled on CM816
- 20 pts enrolled on KN671
- 2 pts enrolled on NeoCOAST
- 6 pts enrolled on NeoCOAST2
- 6 pts enrolled in IIT of neoadj IO for stage I-IIA
- 12 pts enrolled in J1414
- 2 pts on NeoADAURA

Surgical attrition in neoadj trial pts @ McGill

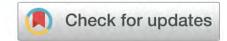
- 24 pts enrolled on CM816
- 20 pts enrolled on KN671
- 2 pts enrolled on NeoCOAST
- 6 pts enrolled on NeoCOAST2
- 6 pts enrolled in IIT of neoadj IO for stage I-IIA
- 12 pts enrolled in J1414
- 2 pts on NeoADAURA

In NADIM2, surgical attrition for chemo-Nivo was 7%. Provencio et al, NEJM 2023

RESECTABILITY REMAINS IN THE CENTER OF THE DEBATE

	NO	N1	N2 _{SINGLE}	N2 _{MULTI}	N2 BULKY	N2 INVASIVE
T1-2	N/A	N/A	POTENTIALLY RESECTABLE (95%)	NO AGREEMENT (50%)	UNRESECTABLE (75%)	UNRESECTABLE (84%)
T3 _{SIZE}	N/A	RESECTABLE (83%) ^a	POTENTIALLY RESECTABLE (87%)	NO AGREEMENT (39%)	UNRESECTABLE (80%)	UNRESECTABLE (88%)
T3 _{SATELLITE}	N/A	POTENTIALLY RESECTABLE (94%)	POTENTIALLY RESECTABLE (79%)	NO AGREEMENT (34%)	UNRESECTABLE (84%)	UNRESECTABLE (91%)
T3 _{INVASION}	N/A	POTENTIALLY RESECTABLE (89%)	NO AGREEMENT (71%) ^b	NO AGREEMENT (28%) ^c	UNRESECTABLE (87%)	UNRESECTABLE (92%)
T4 _{SIZE}	POTENTIALLY RESECTABLE (94%)	POTENTIALLY RESECTABLE (90%)	NO AGREEMENT (66%)	UNRESECTABLE (77%)	UNRESECTABLE (88%)	UNRESECTABLE (93%)
T4 _{SATELLITE}	POTENTIALLY RESECTABLE (78%)	NO AGREEMENT (71%) ^b	NO AGREEMENT (44%)	UNRESECTABLE (85%)	UNRESECTABLE (92%)	UNRESECTABLE (94%)
T4 _{INVASION}	NO AGREEMENT (62%) ^b	NO AGREEMENT (57%) ^b	NO AGREEMENT (34%) ^c	UNRESECTABLE (90%)	UNRESECTABLE (95%)	UNRESECTABLE (94%)

ESMO DEEP DIVE: LUNG CANCER


Houda et al, Lung Cancer 2024

WHAT ABOUT A SURGICAL SOCIETY?

EXPERT CONSENSUS DOCUMENT

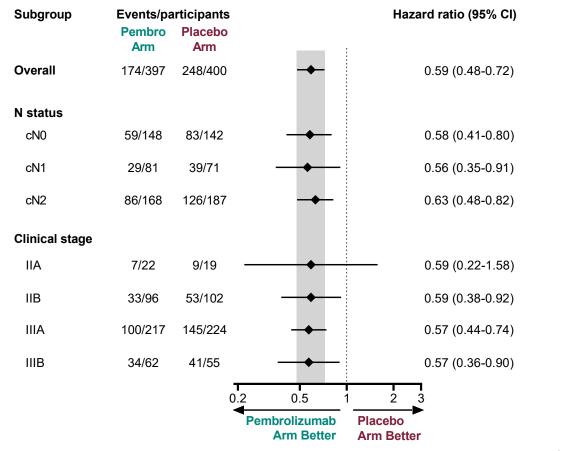
The Society of Thoracic Surgeons Expert Consensus on the Multidisciplinary Management and Resectability of Locally Advanced Non-small Cell Lung Cancer

Samuel S. Kim, MD,¹ David T. Cooke, MD,² Biniam Kidane, MD, MSC,³ Luis F. Tapias, MD,⁴ John F. Lazar, MD,⁵ Jeremiah W. Awori Hayanga, MD,⁶ Jyoti D. Patel, MD,⁷ Joel W. Neal, MD, PhD,⁸ Mohamed E. Abazeed, MD, PhD,⁹ Henning Willers, MD,¹⁰ and Joseph B. Shrager, MD^{11,12}

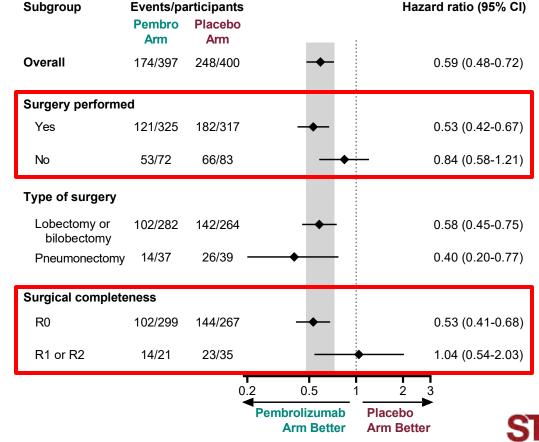
TABLE 2 Consensus Summary of Surgical Resectability for Non-small Cell Lung Cancer^a

			Nonbulky		Bu	lky
Variable	NO	N1	N2 Single	N2 Multstation	N2 Single	N2 Multistation
T1/T2	Resectable	Resectable	Resectable	Potentially resectable	Potentially resectable	Unresectable
тз	Resectable	Resectable	Resectable	Potentially resectable	Potentially resectable	Unresectable
T3 (Pancoast)	Potentially resectable	Potentially resectable	Unresectable	Unresectable	Unresectable	Unresectable
T4 size	Potentially resectable	Potentially resectable	Unresectable	Unresectable	Unresectable	Unresectable
T4 satellite	Potentially resectable	Potentially resectable	Potentially resectable	Unresectable	Unresectable	Unresectable
T4 invasion	Potentially resectable	Potentially resectable	Unresectable	Unresectable	Unresectable	Unresectable

^aThis table represents a general recommendation for the surgical management of locally advanced lung cancer. Every case is unique, and in selected "unresectable" patients, surgical resection may be considered after a multidisciplinary discussion in the institutions with expertise.


ESMO DEEP DIVE: LUNG CANCER

KEY RESPONSIBILITIES OF THE SURGEON: SELECT RESECTABLE PTS, RESECT THEM, GET RO!



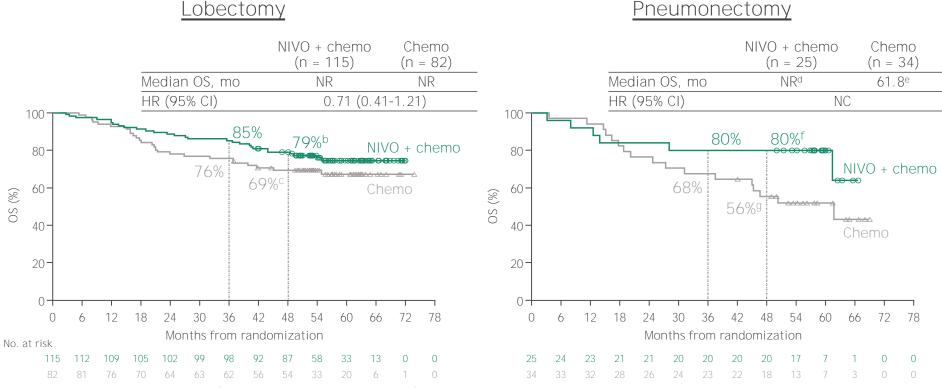
Post Hoc Analysis of EFS in Surgically Relevant Subgroups

Baseline Characteristics

Post Randomization Factors

Data cutoff date for IA2: July 10, 2023.

ES

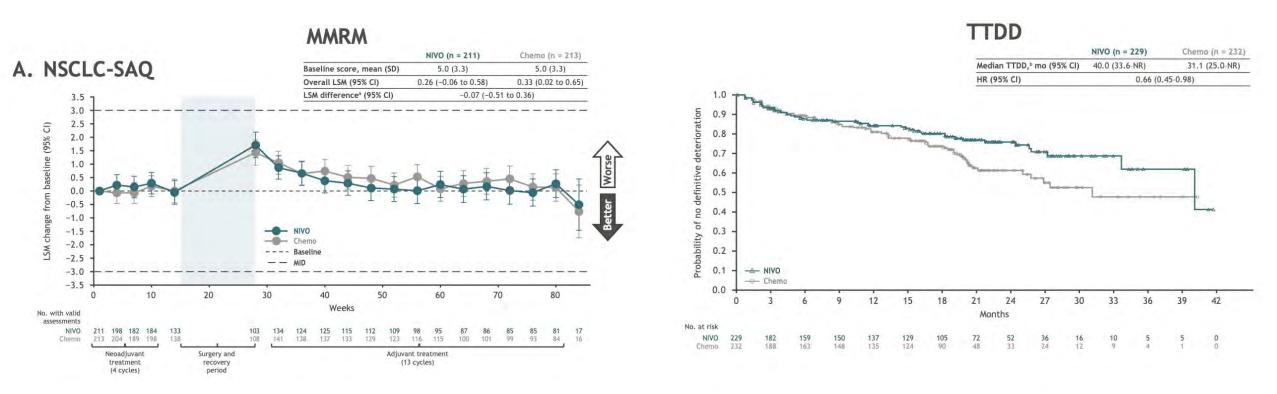

Spicer et al, STS 2024

RESECT WHAT NEEDS TO BE RESECTED: EXTENT DOES NOT IMPACT OS EVEN IF PNEUMONECTOMY IS REQUIRED

ESMO WEBINAR SERIES

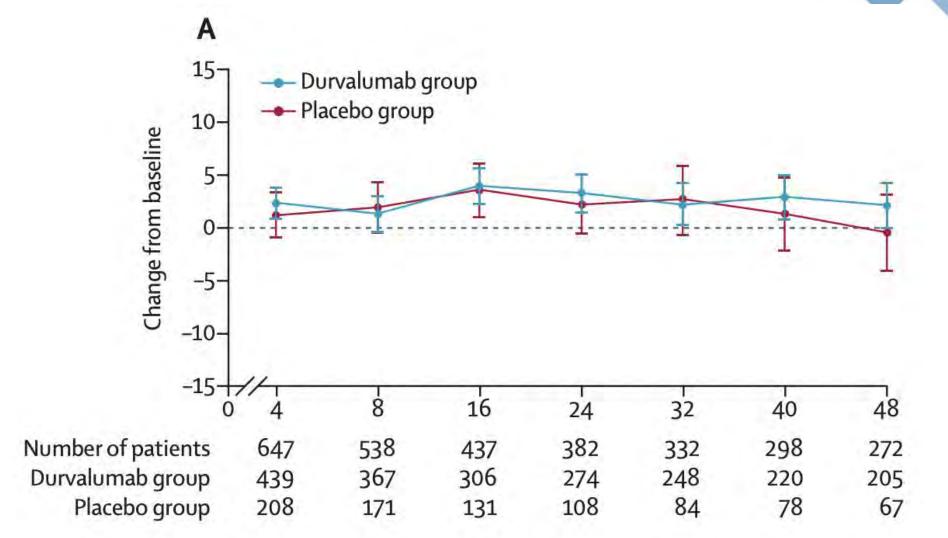
OS by extent of resection^a

 4-year EFS rates were 56%^h with NIVO + chemo vs 43%ⁱ with chemo in patients with lobectomy (HR, 0.59; 95% CI, 0.39-0.90) and 57%^j vs 40%^k in patients with pneumonectomy (HR, NC)


Minimum/median follow-up, 49.1/57.6 months.

HRs were NC if there was an insufficient number of events (< 10 per arm). ^aPatients may have had \geq 1 type of surgery. In the respective NIVO + chemo and chemo arms, surgery types included lobectomy (77% and 61%) and pneumonectomy (17% [11 right; 14 left] and 25% [12 right; 22 left]). ^{b-k95%} CI: ^b70-86; ^c58-78; ^d61.5-NR; ^e31.2-NR; ^f58-91; ^g37-70; ^h46-65; ⁱ32-54; ^j33-75; ^k22-56.

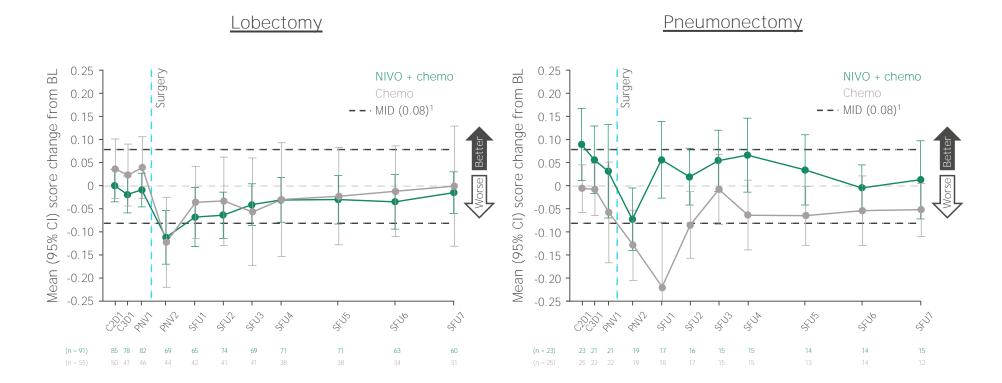
Spicer et al, ASCO 2024


HRQOL THROUGHOUT THERAPEUTIC PHASE WITH LONG-TERM PROLONGATION OF QOL

Spicer et al, ELCC 2024

ESMO WEBINAR SERIES

FOR REFERENCE THESE ARE THE PATIENT REPORTED OUTCOMES FOR PACIFIC ON PHYSICAL FUNCTION...


Hui et al, Lancet Onc 2019 **ESMO WEBINAR SERIES**

NO DETECTABLE IMPACT OF EXTENT OF SURGERY ON HRQOL

CheckMate 816: long-term post-surgical HRQoL

ESMO WEBINAR SERIES

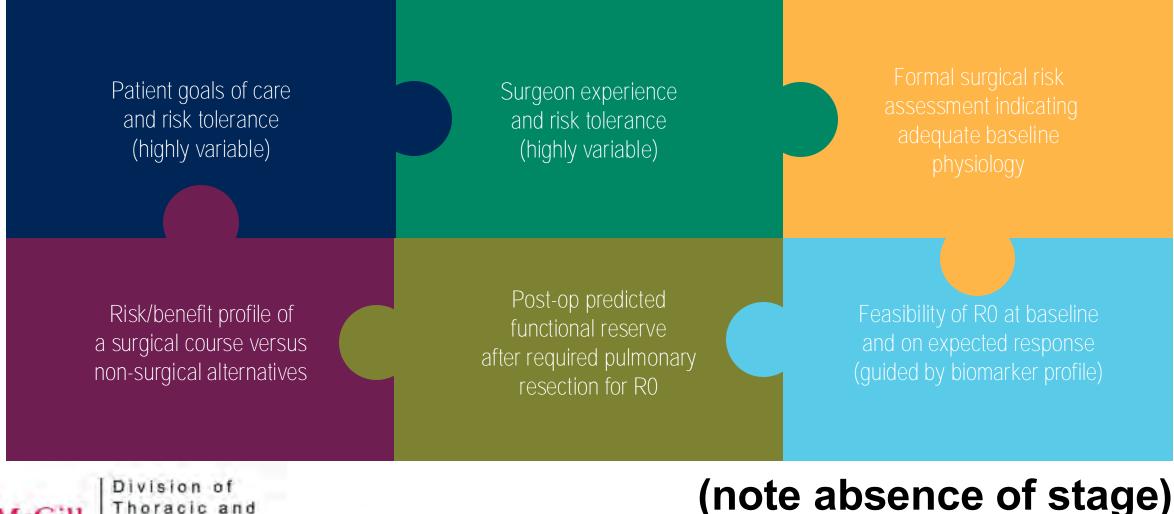
EQ-5D UI mean change from baseline by type of surgery

The EQ-5D-3L UK UI ranges from -0.594 to 1 with a higher score indicating a more favorable health state. Patients included in this analysis had definitive surgery and did not receive adjuvant therapy. Patients may have had \geq 1 type of surgery. 1. Pickard AS, et al. *Health Qual Life Outcomes* 2007;5:70.

Spicer et al, AATS 2024

What did the CM816 and other periop protocols say about resectability?

2) Type of Participant and Target Disease Characteristics


- a) Eastern Cooperative Group (ECOG) Performance Status 0-1 (Appendix 3)
- b) P Participants with histologically confirmed Stage IB (≥ 4 cm), II, IIIA (N2) NSCLC (per the 8th American Joint Committee on Cancer (AJCC) (Rami-Porta, 2015) with disease that is considered resectable.⁴⁹
- c) Measurable disease according to RECIST version 1.1
- d) Participants must have a tumor tissue sample available for PD-L1 IHC testing performed by a third-party analyzing lab during the screening period:
 - i) Either a formalin-fixed, paraffin-embedded (FFPE) tissue block or unstained tumor tissue sections, with an associated pathology report, must be submitted for biomarker evaluation prior to randomization. The tumor tissue sample may be fresh or archival if obtained within 6 months prior to enrollment.
 - ii) Tissue must be a core needle biopsy, excisional or incisional biopsy. Fine needle biopsies obtained by EBUS is not considered adequate for biomarker review and randomization. Core needle biopsies obtained by EBUS are acceptable for randomization.
- e) Absence of major associated pathologies that increase the surgery risk to an unacceptable level
- f) Mediastinal lymph node samples at levels 4 (bilaterally) and 7 are required for clinical staging to assess nodal involvement in participants with mediastinal adenopathy on PET/CT. Mediastinoscopy, thoracostomy, or EBUS are all acceptable for such assessment.
- g) Pulmonary function capacity capable of tolerating the proposed lung resection according to the surgeon.

6.2 Exclusion Criteria

1) Medical Conditions

- a) Presence of locally advanced unresectable regardless of stage or metastatic disease (stage IV). Staging assessment should include sample of lymph nodes at levels 4, bilaterally, and level 7 to rule out stage IIIB disease.
- b) Participants with known EGFR mutations or ALK translocation. If testing is done, an FDA-approved assay should be used, and testing will be performed locally.
- c) Participants with brain metastases are excluded from this study and all participants with stage II disease or higher should have brain imaging (either MRI brain or CT brain with contrast) 28 days prior to randomization.
- d) Participants with \geq Grade 2 peripheral neuropathy
- e) Participants with an active, known or suspected autoimmune disease. Participants with type I diabetes mellitus, hypothyroidism only requiring hormone replacement, skin disorders (such as vitiligo, psoriasis, or alopecia) not requiring systemic treatment, or conditions not expected to recur in the absence of an external trigger are permitted to enroll.
- f) Participants with a condition requiring systemic treatment with either corticosteroids
 (> 10 mg daily prednisone equivalent) or other immunosuppressive medications within
 14 days of randomization. Inhaled or topical steroids, and adrenal replacement steroid

My resectability criteria

Thoracic and Upper Gastrointestinal Surgery

T McGill

IS PDL1 TPS PART OF THE DECISION TREE? **IMPACT ON EFS...**

PD-L1 <1%				
Forde 2022	PD-L1 <1%	78	77	
Wakelee 2023	PD-L1 <1%	138	151	
Heymach 2023	PD-L1 <1%	122	125	
Lu 2023	PD-L1 <1%	69	70	
Cascone 2023	PD-L1 <1%	93	93	
Random effects me	odel	500	516	•
Heterogeneity: $I^2 = 0^4$	%, $T^2 = < 0.1$, $p = 0.91$			
PD-L1 1-49%				
Forde 2022	PD-L1 1-49%	51	47	
Wakelee 2023	PD-L1 1-49%	127	115	
Heymach 2023	PD-L1 1-49%	135	142	-
Lu 2023	PD-L1 1-49%	69	68	
Cascone 2023	PD-L1 1-49%	83	76	-
Random effects me	odel	465	448	-
Heterogeneity: $I^2 = 4$	1.3%, $T^2 = < 0.1$, $p = 0.15$			
PD-L1 ≥50%				
Forde 2022	PD-L1 ≥50%	38	42 —	
Wakelee 2023	PD-L1 ≥50%	132	134	_
Heymach 2023	PD-L1 ≥50%	109	107	
Lu 2023	PD-L1 ≥50%	64	64	
Cascone 2023	PD-L1 ≥50%	45	52	
Random effects me	odel	388	399	-
Heterogeneity: $I^2 = 32$	2.1%, $\tau^2 = < 0.1$, $p = 0.21$			
				P P P
				0.2 0.5 1

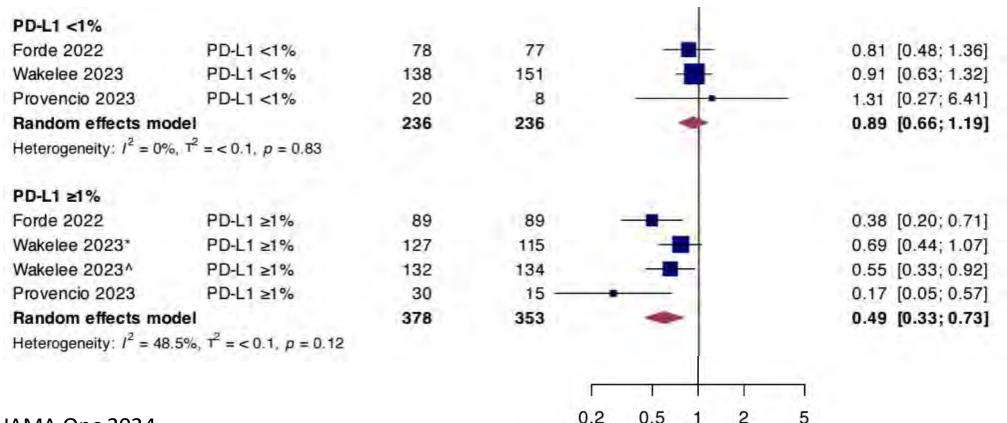
0.84 [0.54; 1.32] 0.75 [0.56; 1.01] 0.76 [0.49; 1.17] 0.59 [0.33; 1.03] 0.73 [0.47; 1.15] 0.74 [0.62; 0.89]

0.58 [0.30; 1.12] 0.52 [0.36; 0.73] 0.70 [0.46; 1.05] 0.31 [0.18; 0.55] 0.76 [0.46; 1.25] 0.56 [0.42; 0.73]

0.25 [0.10; 0.61] 0.48 [0.33; 0.71] 0.60 [0.35; 1.01] 0.31 [0.15; 0.62] 0.26 [0.12; 0.55] 0.40 [0.28; 0.56]

Favors Chemo-IO Favors Chemo

5


11

Sorin et al, JAMA Onc 2024

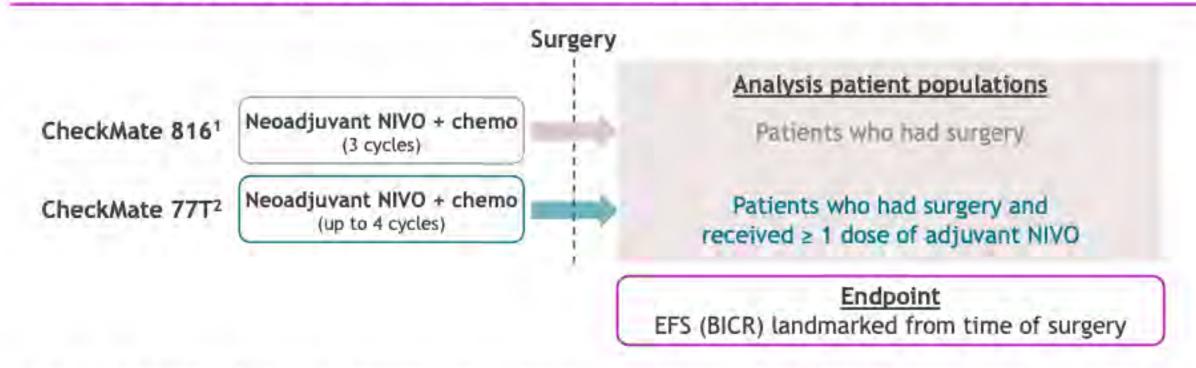
ESMO DEEP DIVE: LUNG CANCER

CLEAR UNMET NEED IS PDL1 NEGATIVE POPULATION WHERE OS BENEFIT IS CONSISTENTLY EQUIVOCAL DESPITE CONSISTENT EFS BENEFIT

Sorin et al, JAMA Onc 2024

ESMO DEEP DIVE: LUNG CANCER

Favors Chemo-IO Favors Chemo

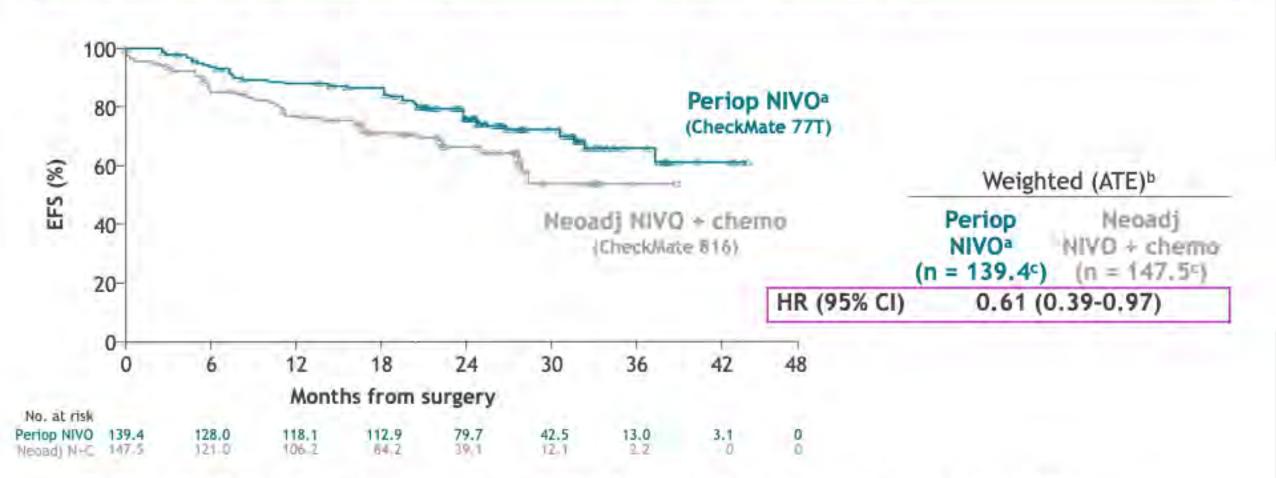


Perioperative vs neoadjuvant nivolumab for resectable NSCLC: patient-level data analysis of CheckMate 77T vs CheckMate 816

Patrick M. Forde,¹ Solange Peters,² Jessica Donington,³ Stephanie Meadows-Shropshire,⁴ Phuong Tran,⁴ Stefano Lucherini,⁵ Cinthya Coronado Erdmann,⁶ Hong Sun,⁶ Tina Cascone⁷

¹The Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA; ²Lausanne University Hospital, Lausanne, Switzerland; ³The University of Chicago, Chicago, IL, USA; ⁴Bristol Myers Squibb, Princeton, NJ, USA; ⁵Bristol Myers Squibb, Uxbridge, UK; ⁶Bristol Myers Squibb, Boudry, Switzerland; ⁷The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Methods: perioperative NIVO vs neoadjuvant NIVO + chemo

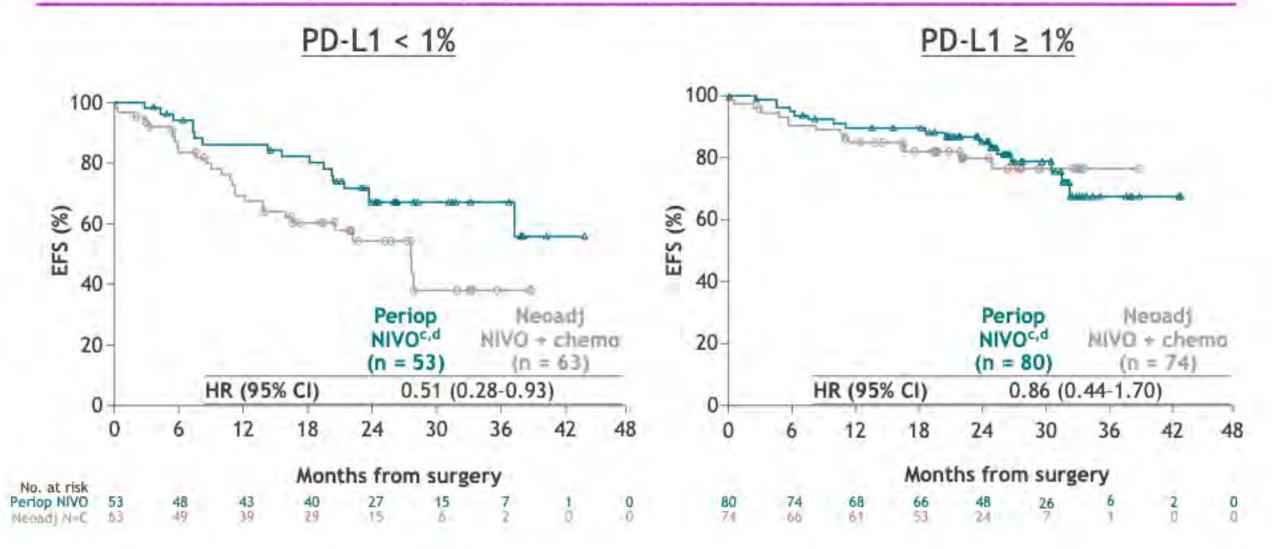


- In lieu of a head-to-head trial, exploratory propensity score weighting analyses (ATT^a and ATE^b) were performed to allow simplified reproduction of a randomized trial by adjusting for clinically relevant baseline demographics and disease characteristics^c between study populations and reducing the confounding effects of these factors
 - Subgroup analyses were not weighted due to smaller sample sizes
- Median duration of follow-upd: 29.5 months (CheckMate 816) and 33.3 months (CheckMate 77T)

¹Average treatment effect for the treated (ATT): a weight of 1 was applied to patients in the perioperative NIVO arm of CheckMate 77T; varying weights were applied to patients in the CheckMate 816 NIVO + chemp arm to make them comparable to those in the perioperative NIVO arm in CheckMate 77T based on propensity scores. "Average treatment effect (ATE): varying weights were applied to all patients in the populations of interest from CheckMate 77T and CheckMate 816 to make them comparable to one another based on propensity scores. "Sex, race, clinical stage, tumor histology, PD-L1 expression, age, ECOG PS, and smoking status. "Database locks: CheckMate 816, October 20, 2021; CheckMate 77T, April 26, 2024. 1. Forde PM, et al. N Engl J Med 2022; 386:1973-1985. 2. Cascone T, et al. N Engl J Med 2024; 390:1756-1769.

Perioperative vs neoadjuvant NIVO: Patient-level analysis

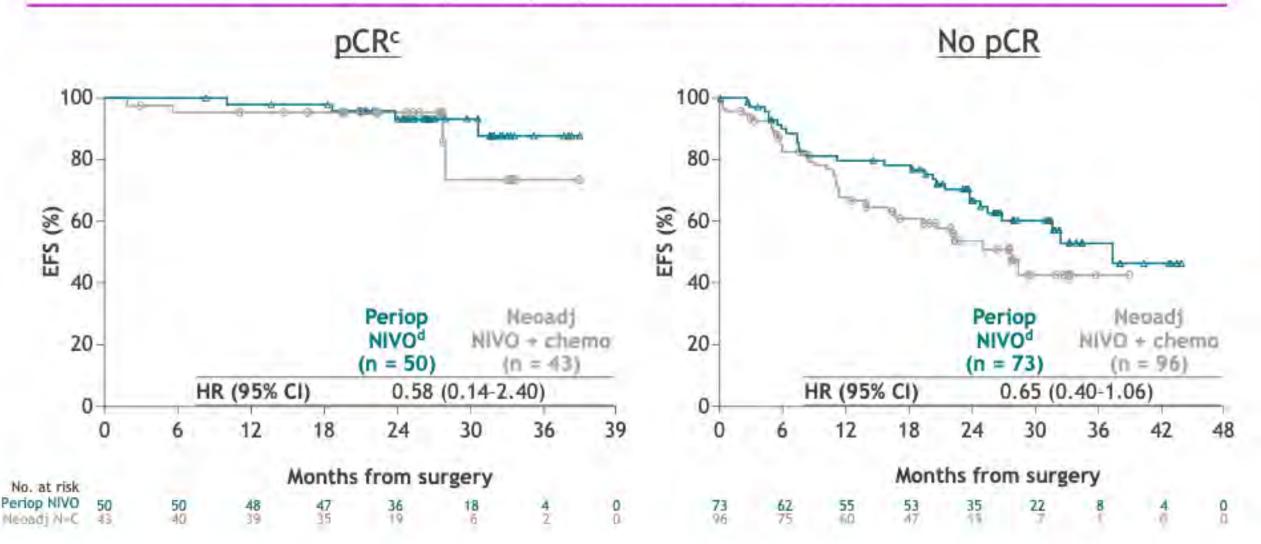
Landmark EFS (BICR) from definitive surgery



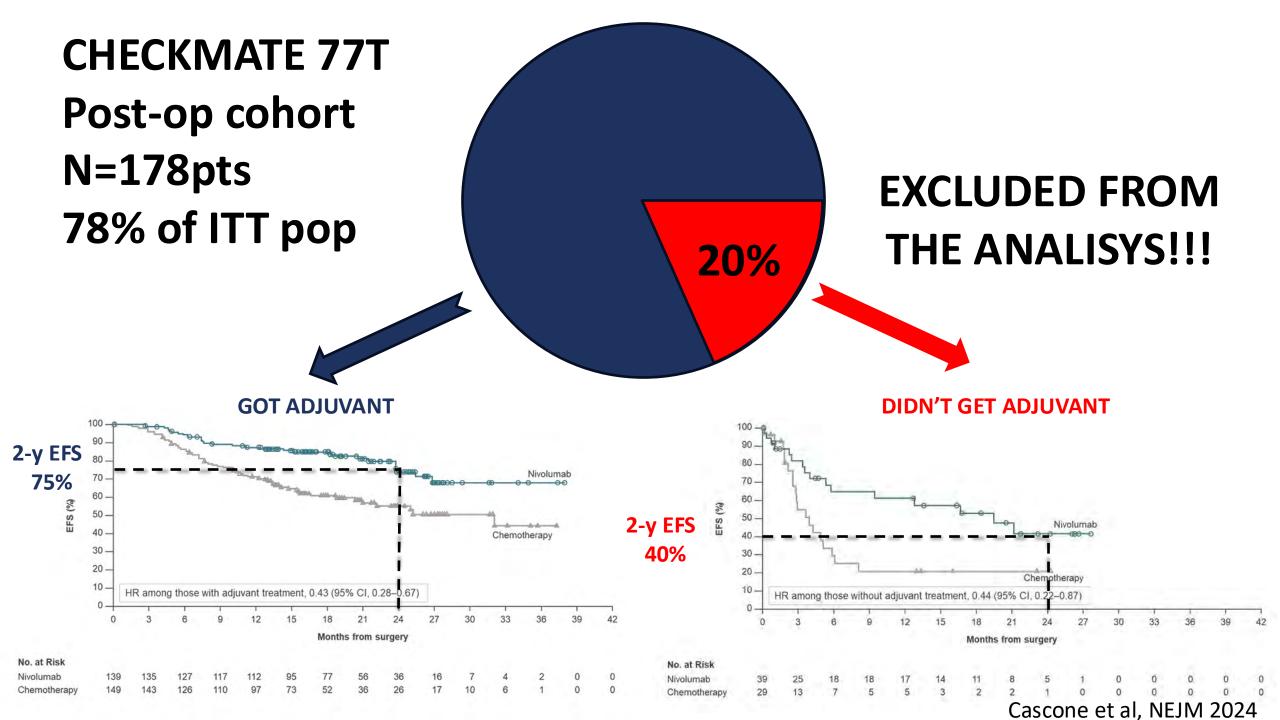
HR (95% CI): ATT^d weighted analysis, 0.56 (0.35-0.90); unweighted analysis, 0.59 (0.38-0.92)

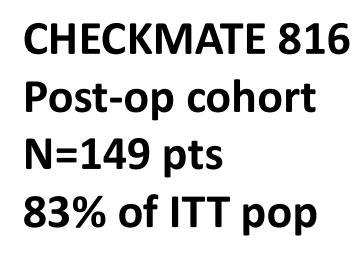
Median follow-up: CheckMate 816, 29.5 months; CheckMate 77T, 33.3 months. 'Includes only patients who received ≥ 1 dose of adjuvant NIVO. "ATE: varying weights were applied to all patients in both neoadjuvant NIVO + chemo arm (CheckMate 816) and perioperative NIVO (CheckMate 77T) to make them comparable to one another. 'N values fractional due to weighting. "ATT: varying weights were applied to patients in the neoadjuvant NIVO + chemo arm (CheckMate 816) to make them comparable to those in the perioperative NIVO arm (CheckMate 77T).

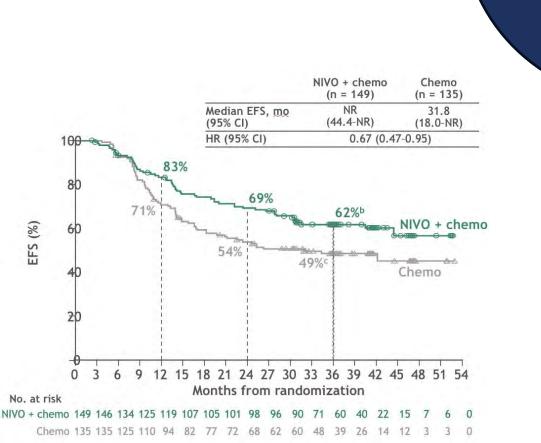
In the unweighted analysis population, 89 patients (64%) completed adjuvant therapy, and median number of doses (range) was 13.0 (1-13). Unweighted landmark EFS from surgery among all patients who had surgery (regardless of whether they received adjuvant NIVO in CheckMate 77T) for periop NIVO vs neoadj NIVO = chemo: HR = 0.82 (95% CI, 0.55-1.21).

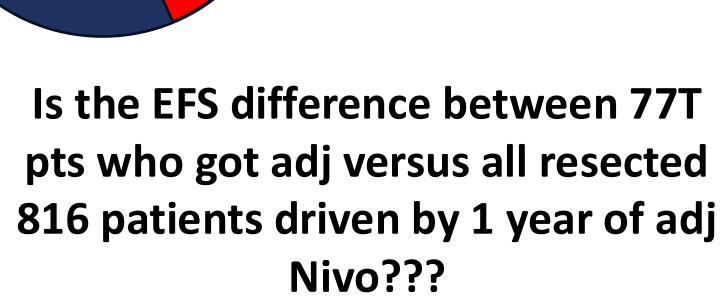

Landmark EFS (analysis population) by tumor PD-L1 expression^{a,b}

Median follow-up: CheckMate 816, 29.5 months; CheckMate 77T, 33.3 months. 'Patients with non-evaluable PD-L1 expression were excluded. ¹Unweighted analyses. ¹Includes only patients who received > 1 dose of adjuvant NIVO. ^ACompleted adjuvant treatment: < 1%, 33 patients (62%) and > 1%, 51 patients (64%). Median number of doses (range): < 1%, 13 (1-13) and > 1%, 13 (1-13).


Perioperative vs neoadjuvant NIVO: Patient-level analysis


Landmark EFS^a (analysis population) by pCR status^{a,b}




Median follow-up: CheckMate 816, 29.5 months; CheckMate 77T, 33.3 months. 'Patients with non-evaluable pCR status were excluded. ^bUnweighted analyses. 'pCR rates in this analysis population: perioperative NIVO, 40.7%; neoadjuvant NIVO + chemo, 30.5%. 'Includes only patients who received a 1 dose of adjuvant NIVO. End of story? Peri-op is best?

???

Spicer et al, ASCO 2023

NOT

EXCLUDED!

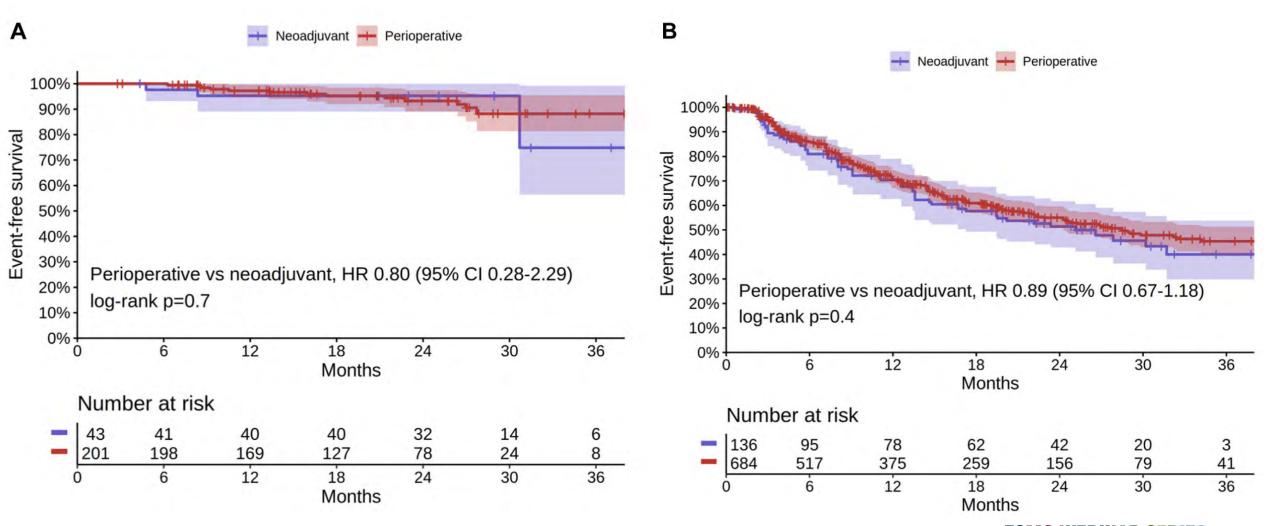
Neoadj vs Peri-op? Remains TBD!

What would an ITT analysis look like?

ORIGINAL ARTICLE

Improved Event-Free Survival After Complete or Major Pathologic Response in Patients With Resectable NSCLC Treated With Neoadjuvant Chemoimmunotherapy Regardless of Adjuvant Treatment: A Systematic Review and Individual Patient Data Meta-Analysis

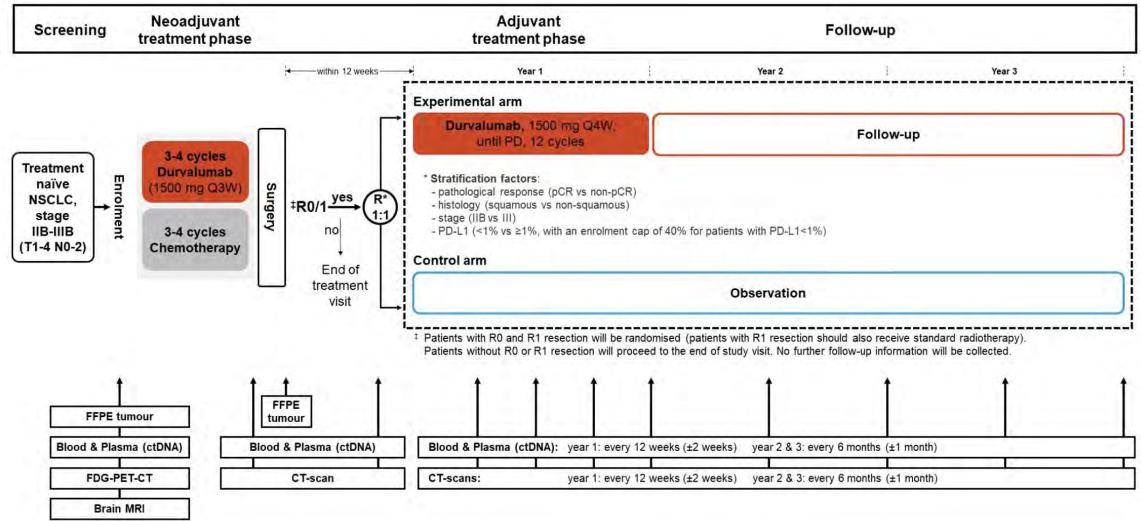
Daniele Marinelli, MD,^a Antonio Nuccio, MD,^{b,c} Alessandro Di Federico, MD,^{d,e} Francesca Ambrosi, MD,^{f,g} Pietro Bertoglio, MD,^{h,i} Eleonora Faccioli, MD,^j Roberto Ferrara, MD,^{b,c} Alessandra Ferro, MD,^k Raffaele Giusti, MD,¹ Francesco Guerrera, MD,^{m,n} Marco Mammana, MD,^j Alessandra Pittaro, MD,^o Matteo Sepulcri, MD,^p Giuseppe Viscardi, MD,^q Filippo Tommaso Gallina, MD^{r,s,*}


ESMO DEEP DIVE: LUNG CANCER

ESMO WEBINAR SERIES

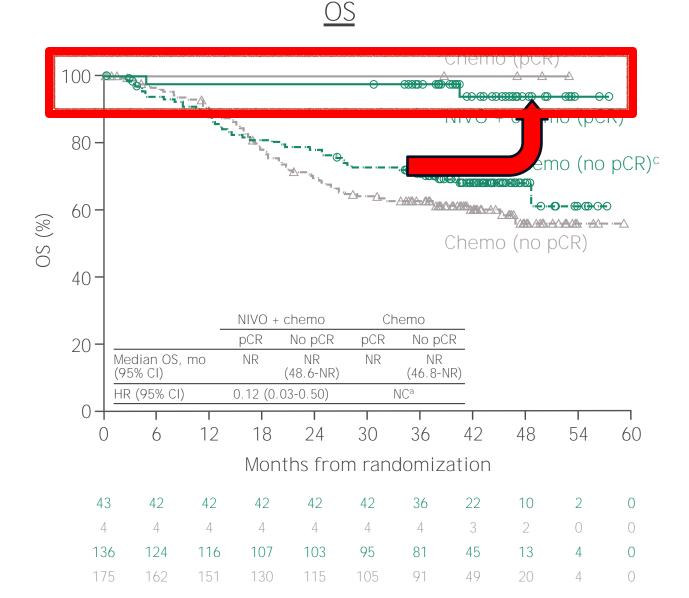
IASLC

ON INTENT TO TREAT ANALYSIS THE DIFFERENCES CANNOT BE DETECTED



ESMO DEEP DIVE: LUNG CANCER

THIS TRIAL WILL RESOLVE THE QUESTION, BUT WILL IT BE TOO LATE???



ESMO DEEP DIVE: LUNG CANCER

ESMO WEBINAR SERIES

WHY I THINK WE NEED TO FOCUS ON NEOADJ...

Because promise of PCR → 95% OS @ 4 years (CM816)

And opportunity for adjuvant escalation

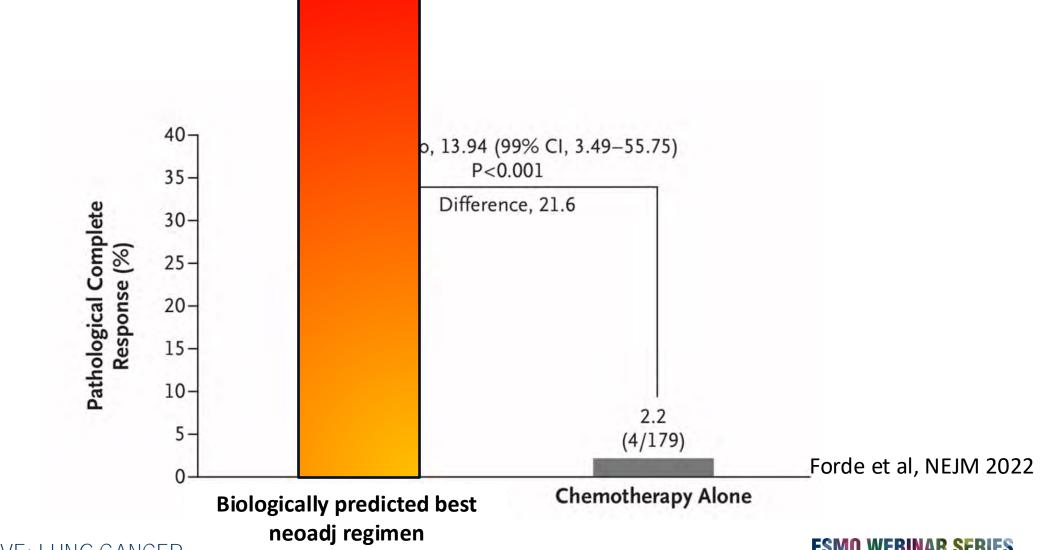
Spicer et al, ASCO 2024

H Bristol Myers Squibb

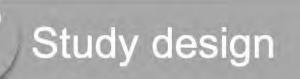
Corporate/Financial News

Corporate news details

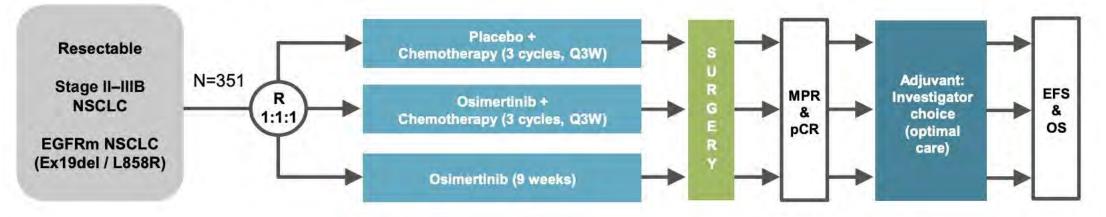
February 19, 2025


See all press releases Sign up for email alerts

Bristol Myers Squibb Announces Opdivo® Plus Chemotherapy as the First and Only Neoadjuvant-Only Immuno-Oncology Therapy to Demonstrate Statistically Significant and Clinically Meaningful Overall Survival in Resectable Non-Small Cell Lung Cancer


ESMO DEEP DIVE: LUNG CANCER

CAN BIOLOGICALLY ADAPTED THERAPY IMPROVE UPON CURRENT NEOADJ SOC?



ESMO DEEP DIVE: LUNG CANCER

NeoADAURA (NCT04351555): Phase III, Randomized, Controlled, Multicenter Study of Neoadjuvant Osimertinib in EGFRm Resectable NSCLC

Stratification:

- Stage II/III
- Non-Asian/Chinese/ other Asian
- Ex19del/L858R

Double-blind treatment arms:

 Placebo QD + investigator's choice of pemetrexed 500 mg/m²

plus carboplatin AUC5 mg/ml.min or cisplatin 75 mg/m²

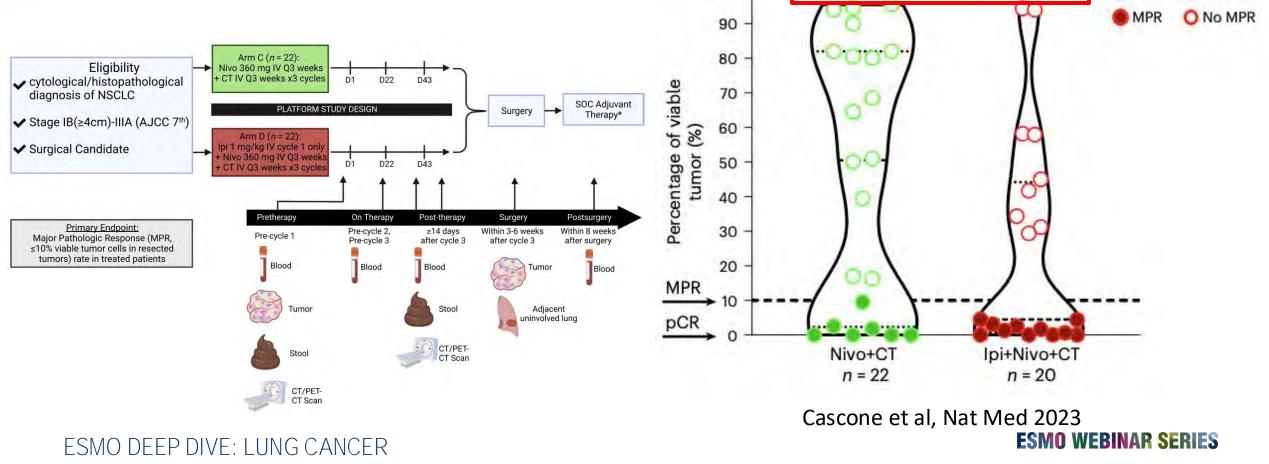
 Osimertinib 80 mg QD + investigator's choice of pemetrexed 500 mg/m² plus carboplatin AUC5 mg/ml.min or cisplatin 75 mg/m²

Open-label (sponsor-blind) treatment arm:

3. Osimertinib 80 mg QD

Adjuvant therapy and follow-up:

- Patients will be followed up for OS until 5 years from surgery, with evaluation at 12 and 24 weeks postsurgery, then every 24 weeks, until disease recurrence or withdrawal of consent
- Osimertinib will be offered to all patients who complete surgery (+/- post-surgical chemotherapy) for up to
- 3 years or until disease recurrence


AUC, area under plasma concentration-time curve; Ex19del, Exon 19 deletion; EFS, event-free survival; EGFRm, epidermal growth factor receptor mutation-positive; NSCLC, non-small cell lung cancer; R, randomization, Q3W, every three weeks; QD, once per day; MPR, major pathological response; pCR, complete pathological response; OS, overall survival

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

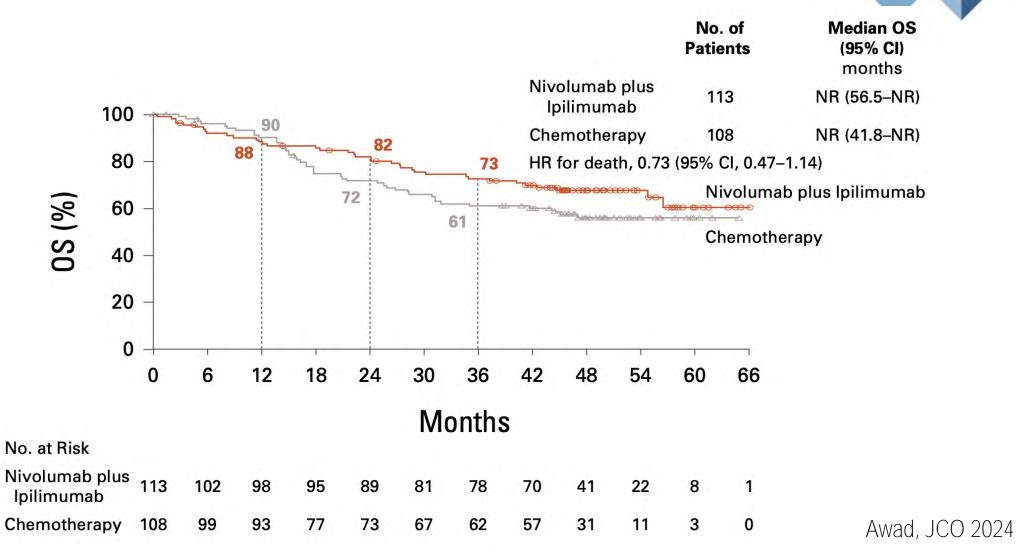
nature medicine

Article

Neoadjuvant chemotherapy plus nivolumab with or without ipilimumab in operable non-small cell lung cancer: the phase 2 platform NEOSTAR trial

MPR

No MPR


All resected

Median 4.5%

Median 50.5%

100

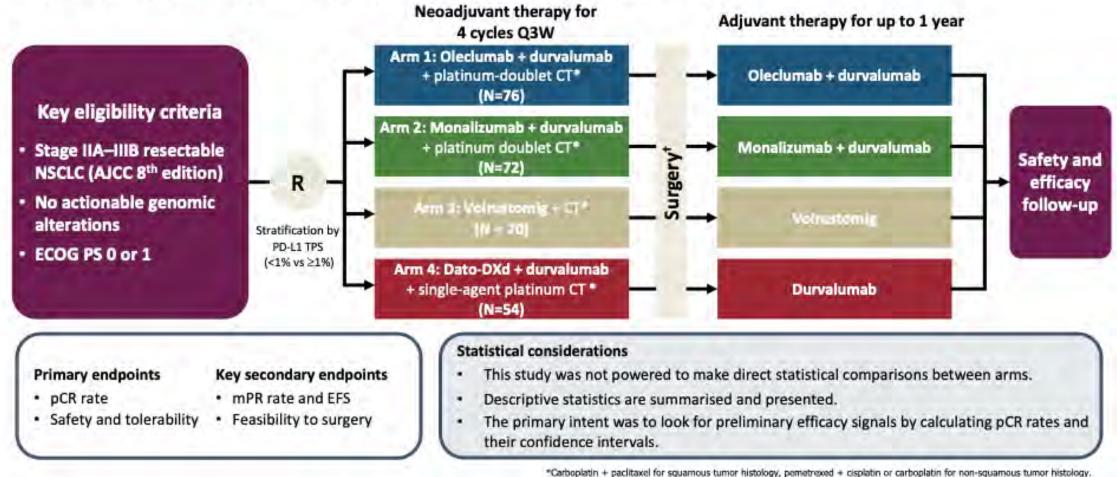
BECAUSE PATH RESPONSE BEGETS OS BENEFIT...

ESMO DEEP DIVE: LUNG CANCER

#WCLC24 wclc2024.iaslc.org

PL02.07

NeoCOAST-2: Efficacy and Safety of Neoadjuvant Durvalumab (D) + Novel Anticancer Agents + CT and Adjuvant D ± Novel Agents in Resectable NSCLC


<u>Tina Cascone</u>,¹ Florian Guisier,² Laura Bonanno,³ Moishe Liberman,⁴ Olivier Bylicki,⁵ Amelia Insa,⁶ Lorenzo Livi,⁷ Romain Corre,⁸ Thomas Egenod,⁹ Agata Bielska,¹⁰ Alula Yohannes,¹¹ Ray Mager,¹¹ Yun He,¹⁰ Adam Dowson,¹² Lara McGrath,¹⁰ Rakesh Kumar,¹¹ Italia Grenga,¹⁰ Jonathan Spicer,¹³ Patrick Forde¹⁴

¹Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Univ Rouen Normandie, LITIS Lab QuantIF team EA4108, CHU Rouen, Department of Pneumology and Inserm CIC-CRB 1404, F-76000 Rouen, France; ³Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy; ⁴Division of Thoracic Surgery, University of Montréal, Montréal, Québec, Canada; CETOC - CHUM Endoscopic Tracheobronchial and Oesophageal Center, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; ⁵Respiratory Medicine Department, Hôpital d'Instruction des Armées Sainte-Anne, Toulon, France; ⁶Medical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain; ⁷Department of Radiation Oncology, University of Florence, Florence, Italy; ⁸Department of Medical Oncology, CH de Cornouaille, Quimper, France; ⁹Department of Thoracic Oncology, Dupuytren University Hospital, Limoges, France; ¹⁰AstraZeneca, Waltham, MA, USA; ¹¹AstraZeneca, Gaithersburg, MD, USA; ¹²AstraZeneca, Cambridge, UK; ¹³Department of Thoracic Surgery, McGill University, Montreal, QC, Canada; ¹⁴Bloomberg–Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA

Cascone T | NeoCOAST-2: Efficacy and Safety of Neoadjuvant Durvalumab (D) + Novel Anticancer Agents + CT and Adjuvant D ± Novel Agents in Resectable NSCLC

NeoCOAST-2: open-label, multi-arm platform study

"Within 40 days of the last does of neoadjurant for an additional and the management of the last does of neoadjurant treatment.

CT, chemotherapy; Dato-DXd, datopotamab deruxtecan; EPS, event-free survival; mPR, major pathological response; NSCLC, non-small-cell lung cancer; pCR, pathological complete response; PD-L1, programmed cell death ligand-1; Q3W, every 3 weeks; R, randomised; TPS, tumour proportion score.

Cascone T| NeoCOAST-2: Efficacy and Safety of Neoadjuvant Durvalumab (D) + Novel Anticancer Agents + CT and Adjuvant D \pm Novel Agents in Resectable NSCLC.

ESMO DEEP DIVE: LUNG CANCER

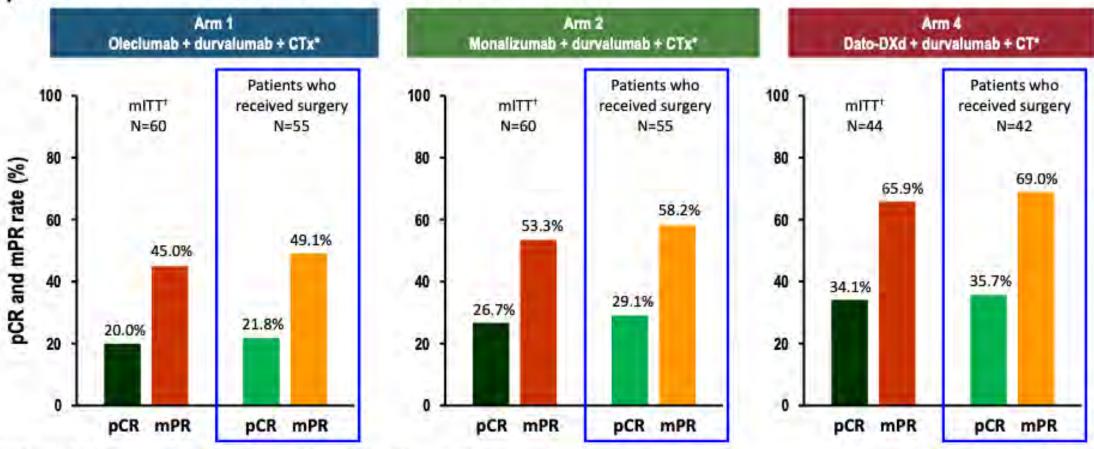
Baseline patient characteristics

n (%)	Arm 1 Oleclumab + durvalumab + CTx* N=76	Arm 2 Monalizumab + durvalumab + CTx* N=72	Arm 4 Dato-DXd + durvalumab + CT* N=54
Median age, years (range)	66.5 (30-79)	66.0 (48-83)	65.0 (38-81)
Female/Male, n (%)	29 (38.2) / 47 (61.8)	29 (40.3) / 43 (59.7)	22 (40.7) / 32 (59.3)
Race, n (%) Asian Black or African American	7 (9.2) 1 (1.3)	5 (6.9)	5 (9.3) 0
White	48 (63.2)	43 (59.7)	37 (68.5)
Not reported	20 (26.3)	24 (33.3)	12 (22.2)
ECOG PS 0/1, n (%)	45 (61.6) / 28 (38.4) [†]	49 (69.0) / 22 (31.0) [‡]	36 (66.7) / 18 (33.3)
PD-L1 <1% / PD-L1 ≥1% TPS, n (%)	24 (31.6) / 52 (68.4)	24 (33.3) / 48 (66.7)	13 (24.1) / 41 (75.9)
Stage, n (%)§ IIA IIB	7 (9.2) 16 (21.1)	7 (9.7) 19 (26.4)	2 (3.8) 13 (24.5)
IIIA	40 (52.6)	33 (45.8)	27 (50.9)
IIIB	13 (17.1)	13 (18.1)	11 (20.8)
Histology, n (%)			
Adenocarcinoma	50 (65.8)	46 (63.9)	33 (61.1)
Squamous cell carcinoma Other	24 (31.6) 2 (2.6)	20 (27.8) 6 (8.3)	17 (31.5) 4 (7.4)

The majority of patients received carboplatin compared with cisplatin: in Arm 1, n=53 vs n=21; in Arm 2, n=55 vs n=16; and in Arm 4, n=47 vs n=7 patients received carboplatin vs cisplatin

Data cut-off: 17 June 2024

*Arms 1 and 2 received platinum-doublet CT and Arm 4 received single-agent platinum CT; 'Data missing for 3 patients;


*Data missing for 1 patient; * Data missing for 1 patient in Arm 4.

CT(x), chemotherapy(s); D, durvalumab; Dato-DXd, datopotamab deruxtecan; ECOG PS, Eastern Cooperative Oncology Group Performance Status; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; TPS, tumour proportion score.

Cascone T| NeoCOAST-2: Efficacy and Safety of Neoadjuvant Durvalumab (D) + Novel Anticancer Agents + CT and Adjuvant D \pm Novel Agents in Resectable NSCLC

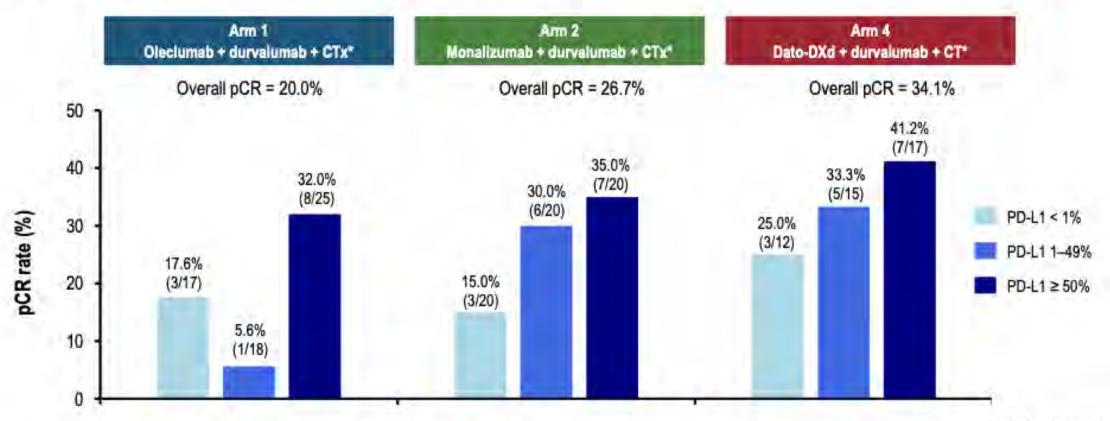
ESMO WEBINAR SERIES

pCR and mPR rates across treatment arms

Data cut-off: 17 June 2024

*Arms 1 and 2 received platinum-doublet CT and Arm 4 received single-agent platinum CT.

The modified intention-to-treat population includes all randomised patients with confirmed NSCLC histology


who received at least 1 dose of study treatment and had data available at the data cut-off, including these who were unable to receive or complete surgery. CT(x), chemotherapy(s); Dato-DXd, datopotamab denuxtecan; mITT, modified intention-to-treat population; mPR, major pathological response; pCR, pathological complete response.

Cascome T| NeoCDAST-2: Efficacy and Safety of Neoadjuvant Durvalumab (D) + Novel Anticancer Agents + CT and Adjuvant D ± Novel Agents in Resectable NSCLC

Pathological assessment performed locally and/or centrally

ESMO WEBINAR SERIES

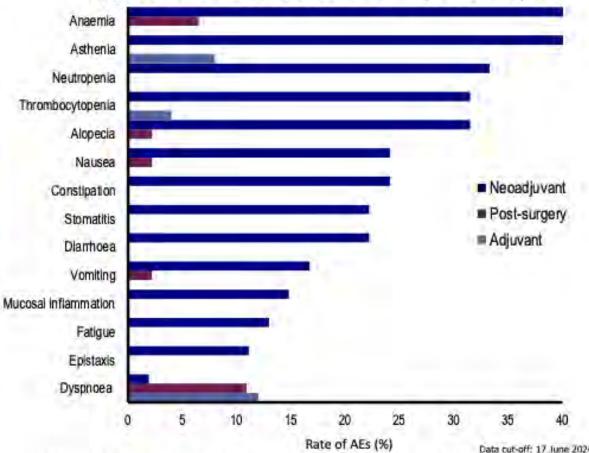
pCR rates across baseline PD-L1 subgroups

Data cut-off: 17 June 2024

Based on the modified intention-to-breat population which includes all randomised patients with confirmed NSCLC histology who received at least 1 dose of study breatment and had data available at the DCO, including those who were unable to receive or complete surgery. Baseline PD-L1 status is assessed using central (Ventana SP263) or local testing (Ventana SP263, pharmDx 28-8, or pharmDx 22C3). Central results are reported for patients who have central results, otherwise local results are reported. In AEGEAN, pCR rates were 9.0%, 16.3% and 27.5% in PD-L1 <1%, PD-L1 1–49% and PD-L1 ≥50% subgroups, respectively (Heymach et al. *N Engl J Med* 2023;389;1672–84).

*Arms 1 and 2 received platinum-doublet CT and Arm 4 received single-agent platinum CT.

CT(x), chemotherapy(s); Dato-DXd, datopotamab deruxtecan; pCR, pathological complete response; PD-L1, programmed cell death ligand 1.


Cascone T| NeoCDAST-2: Efficacy and Safety of Neoadjuvant Durvalumab (D) + Novel Anticancer Agents + CT and Adjuvant D \pm Novel Agents in Resectable NSCLC

ESMO WEBINAR SERIES

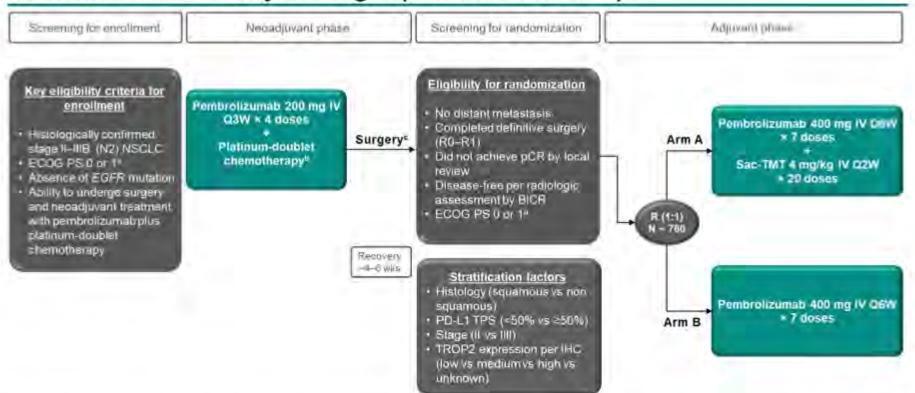
n (%)	Neoadjuvant N=54	Post-surgery N=46	Adjuvant N=25
Any TEAE	53 (98.1)	24 (52.2)	11 (44.0)
Any TRAE	52 (96.3)	6 (13.0)	5 (20.0)
Grade ≥3 TEAE	13 (24.1)	4 (8.7)	1 (4.0)
Grade ≥3 TRAE	10 (18.5)	Ō	0
AE leading to discontinuation	4 (7.4)	0	Ð
SAE	10 (18.5)	7 (15.2)	1 (4.0)
Any SAE with outcome of death	0	1 (2.2)	0

2024 World Conference SEPTEMBER 7-10, 2024 on Lung Cancer SAN DIEGO, CA USA

 One death in the post-surgery phase was due to idiopathic pulmonary fibrosis unrelated to treatment.*

Patients with multiple occurrences in the same category are counted once per category regardless of the number of occurrences. *Unrelated per principal investigator, independent adjudication is pending

AE, adverse event; SAE, serious adverse event; TEAE, treatment-emergent adverse event; TRAE, treatment-related adverse event.


Cascone T| NeoCOAST-2: Efficacy and Safety of Neoadjuvant Durvalumab (D) + Novel Anticancer Agents + CT and Adjuvant D \pm Novel Agents in Resectable NSCLC

ESMO DEEP DIVE: LUNG CANCER

Any-grade TEAEs in ≥10% of patients from any treatment phase

ADC NOW IN THE PHASE 3 REALM OF RESECTABLE NSCLC, ALBEIT AS AN ADJUVANT ESCALATION STRATEGY...

TroFuse-019 Study Design (NCT06312137)

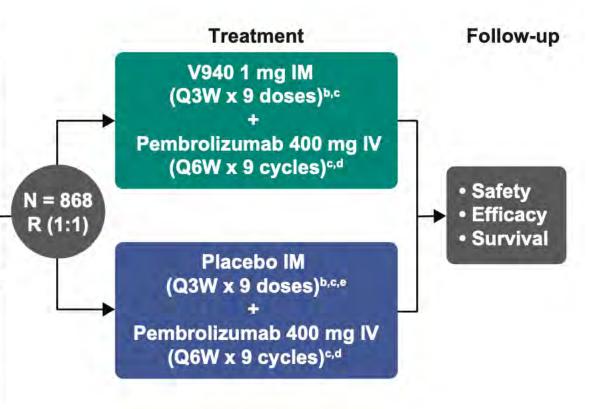
⁴Must be assessed within 10 days before first dose of study treatment and randomization. ⁶Investigator's choice of cisplatin 75 mg/m2 Q3W × 4 doses with pemetrexed 500 mg/m2 Q3W × 4 doses or carboplatin AUC5 or 6 mg/mL/min Q3W × 4 doses with pemetrexed 500 mg/m2 Q3W × 4 doses (nonsquamous only); cisplatin 75 mg/m2 Q3W × 4 doses with gemcitabine 1000 or 1250 mg/m2 on days 1 and 8 Q3W × 8 doses or carboplatin AUC5 or 6 mg/mL/min Q3W × 4 doses with gemcitabine 1000 or 1250 mg/m2 on days 1 and 8 Q3W × 8 doses (squamous only); cisplatin 75 mg/m2 Q3W × 4 doses (squamous only); cisplatin 75 mg/m2 Q3W × 4 doses with gemcitabine 1000 or 1250 mg/m2 on days 1 and 8 Q3W × 8 doses (squamous only); cisplatin 75 mg/m2 Q3W × 4 doses with pacitaxel 175 or 200 mg/m2 Q3W × 4 doses; or carboplatin AUC5 or 6 mg/mL/min Q3W × 4 doses with paclitaxel 175 or 200 mg/m2 Q3W × 4 doses (any histology). 'Patients who achieve pCR or R2 resection status and receive radiotherapy are not randomized and may be treated with pembrolizumab monotherapy at investigator's discretion.

Lee et al. CSCO 2024

ESMO WEBINAR SERIES

INDIVIDUALIZED NEOANTIGEN THERAPY NOW IN RESECTABLE NSCLC FOR ADJUVANT AND PERIOP

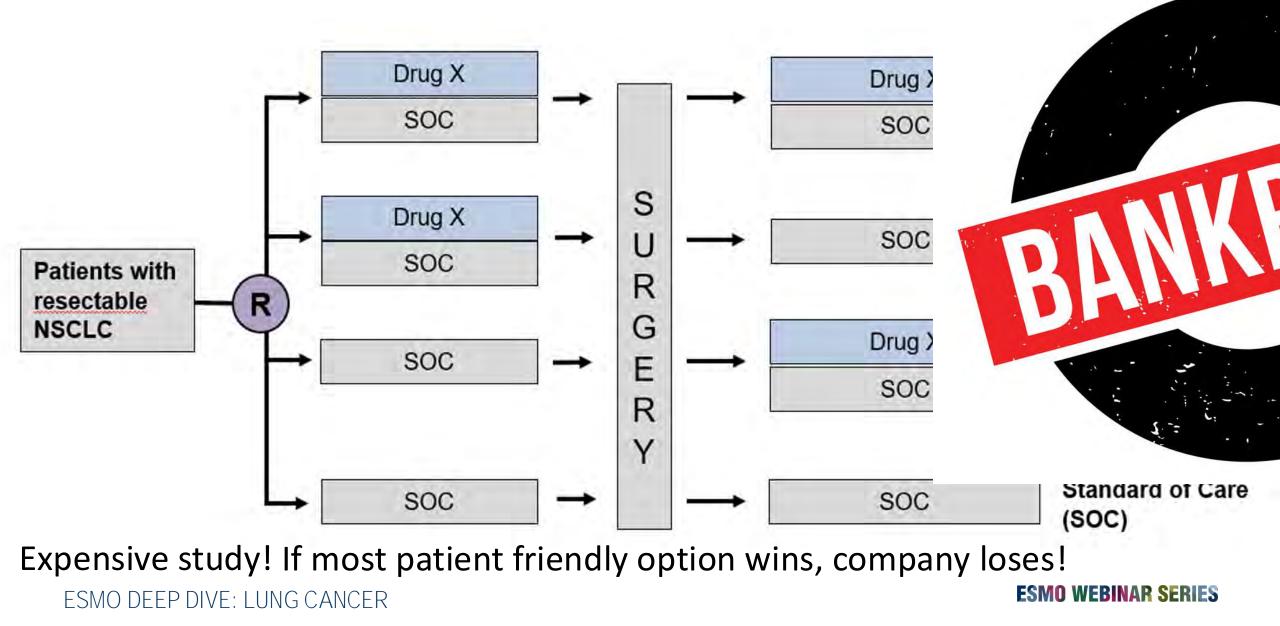
Figure. INTerpath-002 study design


Screening Study Population

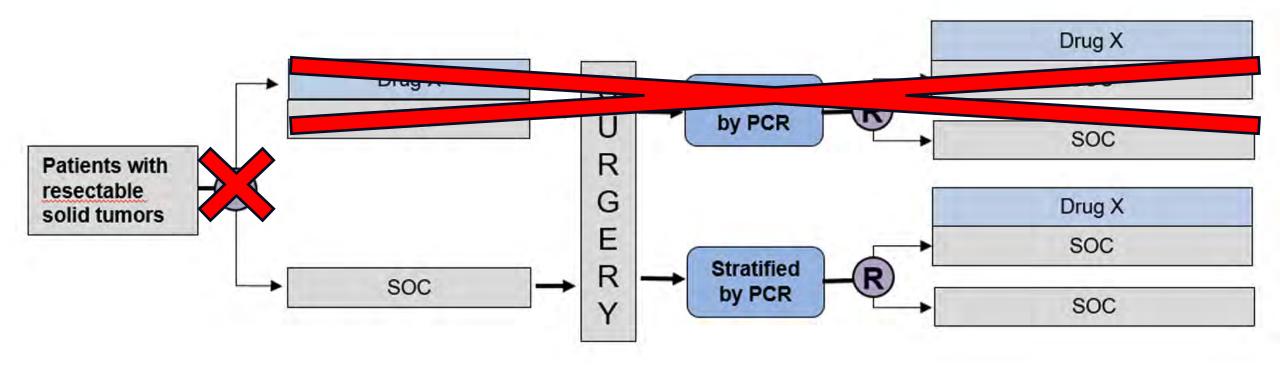
- Surgically resected (R0) stage II, IIIA, IIIB (N2) NSCLC per AJCC 8th edition
- No neoadjuvant treatment
- Received adjuvant platinum-doublet chemotherapy with no recurrence
- No EGFR mutation
- FFPE tissue and blood for NGS and V940 generation^a
 ECOG PS 0 or 1

Stratification Factors

Histology (squamous vs nonsquamous)
PD-L1 expression (TPS: <1% vs 1% to 49% vs ≥50%)
Stage (II vs III)


 Geographic location (North America/ Western Europe/Australia vs rest of world)

Spicer et al, AACR 2024



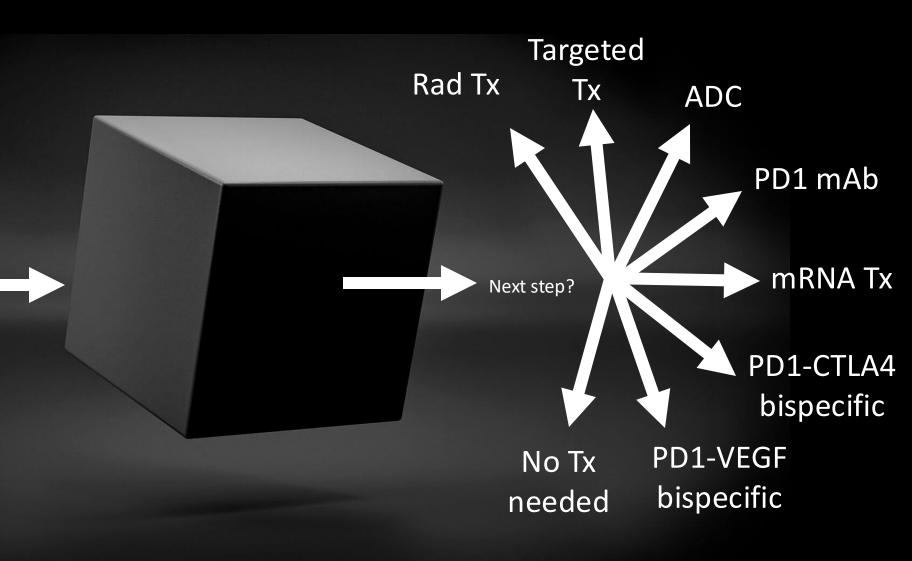
MY FEARS FOR THE FUTURE OF RESECTABLE NSCLC TRIALS

MY FEARS FOR THE FUTURE OF RESECTABLE NSCLC TRIALS

Expensive study! So why bother with the commercially risky design...

ESMO DEEP DIVE: LUNG CANCER

MAJOR CHALLENGES


- Shifting standards that lack consensus: Can we find a way to all pull in the same direction?
- Increasing diagnostic precision means more subgroups and challenging accruals
- Multiple competing strategies may yield positive results in overlapping subgroups
- How to manage patient interests when these collide with commercial imperatives!

Integration of key data from:

- Clinical characteristics
- Molecular details
- Imaging Response
- ctDNA response
- Post-induction tumor-immune interface pattern
- High throughput PDO screen
- Adverse-event profile

T McGill

Division of Thoracic and Upper Gastrointestinal Surgery

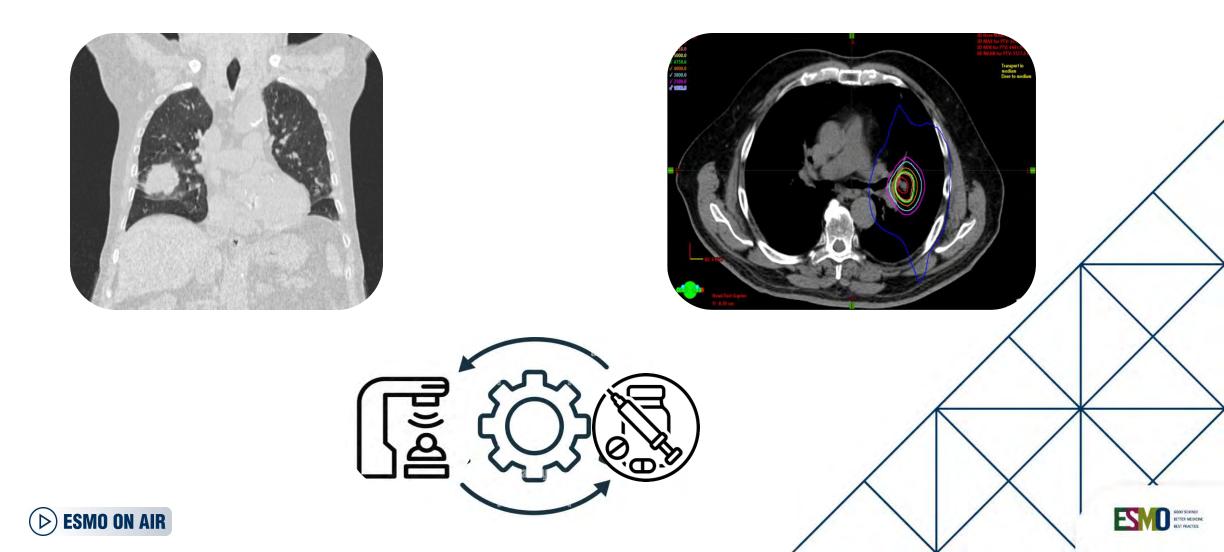
ESMO ON AIR

ESMO Deep Dive Webinar

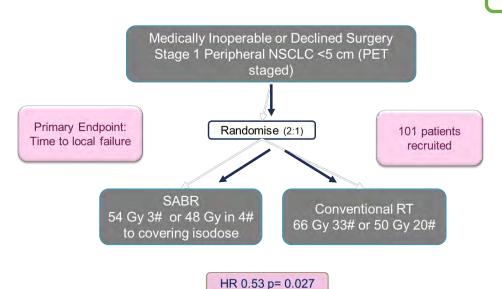
Non-metastatic Non-small Cell Lung Cancer: Multidisciplinary State of the Art Radiation – opportunities, future directions

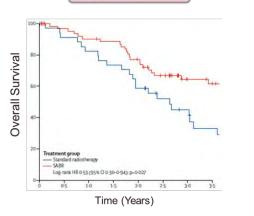
Prof Corinne Faivre-Finn The Christie NHS Foundation Trust University of Manchester UK

5th March 2025

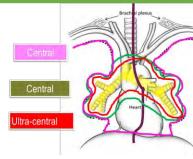

Declaration of Interest

Research funding - AstraZeneca (to the institution) Research funding – Elekta (to the institution)



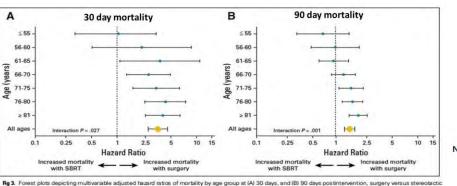


Early-stage NSCLC

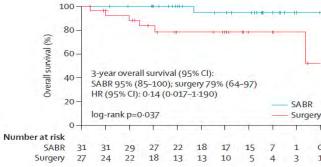

SABR is Standard of Care for 'Medically Inoperable' early stage NSCLC

Ball. Lancet Oncol 2019

Local control – 80-90%

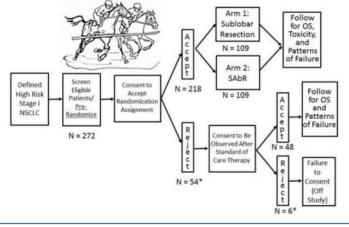

Central and Ultra-central SABR Outcomes

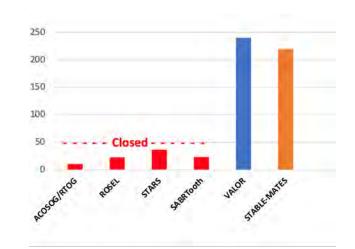
Study	Definition of Ultra-central	Dose/Fractionation	2-yr Local Control	Toxicity
Nestle: Lungtech EORTC, 2023 (n=31)	Withing 2cm or touching PBT or adjacent to mediastinal or pericardial pleura	60Gy/8F	78.6% (3yrs)	Grade 3:22.6% Grade 5: 6.5%
Giulianie: Sunset, 2023 (n=30)	PTV overlapping PBT, oesophagus, pulmonary vein/artery	60Gy /8F 120% hotspot	86.9% (3yr)	Grade 3: <mark>3.3%</mark> Grade 5: 3.3%
HILUS Phase II, 2021 (n=65)	≤ 1 cm from PBT	56 Gy/8 fx (100%) 150% hotspot	83%	Grade 3+ <mark>: 34%</mark> Grade 5: 15%
Breen, 2021 (n=110)	GTV abutting PBT, trachea; PTV overlap PBT, trachea; GTV ≤ 1 cm from PBT	50 Gy/5 fx (57%) 60 Gy/8 fx (15%) 48 Gy/4 fx (13%)	84%	Grade 5 (4%)
RTOG 0813, 2019 (n=120)	≤ 2cm from PBT	50-60 Gy/5 fx	87.9-89.4%	7.2% DLTs
Raman, 2018 (n=26)	PTV overlapping PBT, trachea, esophagus, pulmonary vein/artery	60 Gy/8 fx (77%) 50 Gy/10 fx (12%)	100%	Grade 2-3: 7.9% Grade 4-5: 0%
Tekatli, 2016 (n=47)	PTV overlapping trachea or main bronchi	60 Gy/12 fx 140% hotspot	78%	Grade 3+: <mark>38%</mark> Grade 5: 13%
Li, 2014 (n=82)	Dose constraints for 50 Gy in 4 fx not met	70 Gy/10 fx (100%)	96.2%	Grade 3: 3.6% Grade 5: 1.2%


Q1- Can we reduce the toxicity of SABR?

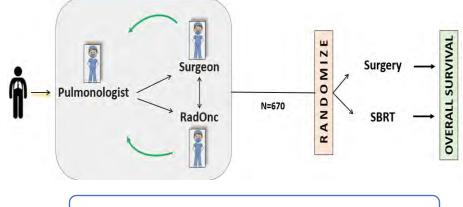
SABR vs Surgery

	ROSEL	STARS	Z4099
Eligibility criteria	Operable non- central stage IA	Operable stage IA, IB (≤ 4 cm)	'Borderline' operable, stage I <3cm
Primary end-point	Local & regional control, QoL treatment costs at 2- and 5-years	OS at 3 years	OS at 3 years
Secondary end- points	OS, pulmonary functions, QALYs, total costs	DSS at 3 years Local PFS at 3 years; toxicities	LRR, DFS, toxicities, pulmonary function
Total enrolled	22 (of 920)	36 (of 1030)	10 (of 420)

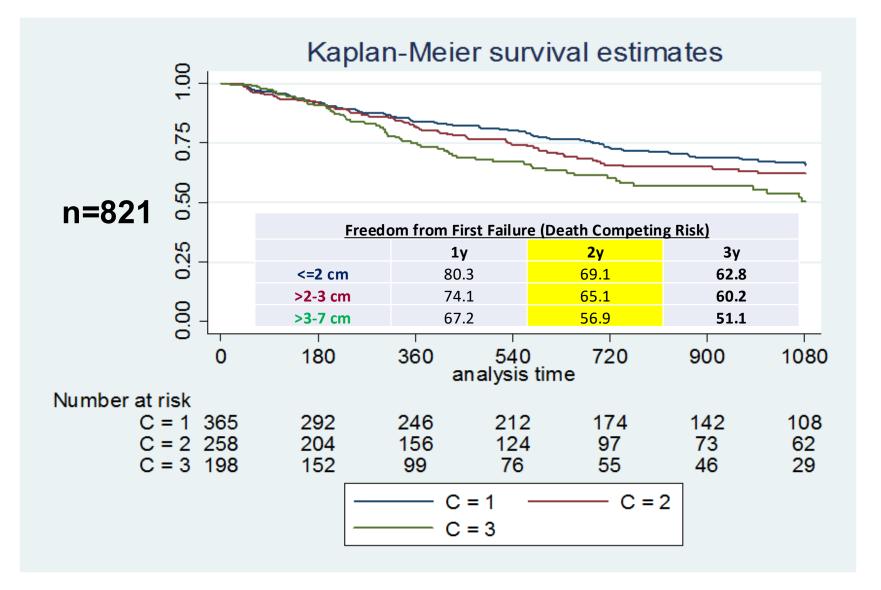

Pooled analysis STARS and ROSEL **n=58** Chang. Lancet Oncol 2015


Rg 3. Forest plots depicting multivariable adjusted hazard ratios of mortality by age group at (A) 30 days, and (B) 90 days postintervention, surgery versus stereotard body radiotherapy (SB RT).

Q2- Can SABR be an alternative to surgery?


STABLMATES NCT02468024

Completed accrual


VALOR NCT02984761

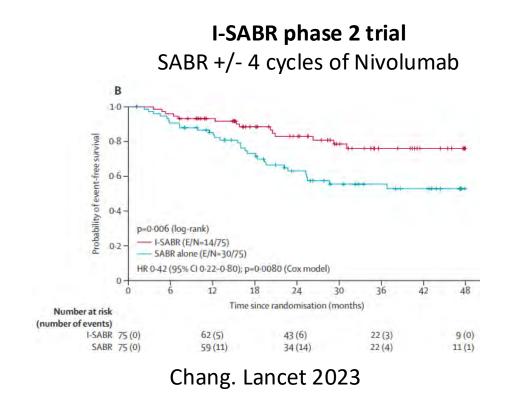
A

430/670 randomised

Risk of treatment failure-Real world evidence

- [†]tumour size
 - = 1 rate of failure
- Majority of failures within first 2 years post SABR
- Majority are distant failures

•	Chemotherapy too toxic
	in this population

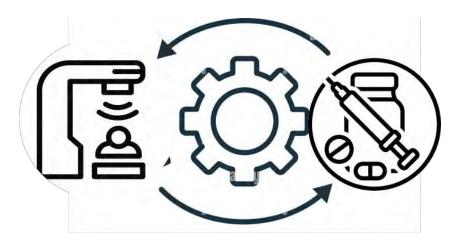

 IO has a tolerable toxicity profile

Rationale for adjuvant IO

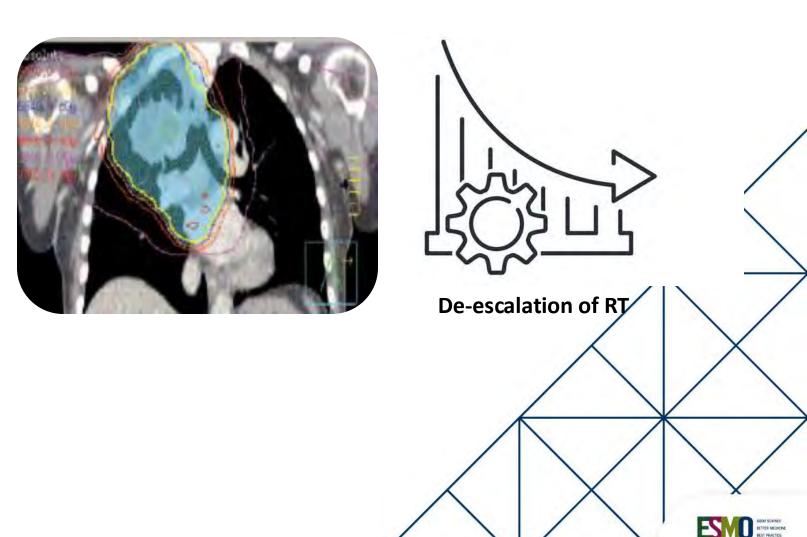
Role of adjuvant systemic therapies

Q3- Can IO reduce the risk of metastatic disease in patients without driver mutations ?

Q4- Can EGFR TKIs reduce the risk of metastatic disease in patients with driver mutations ?

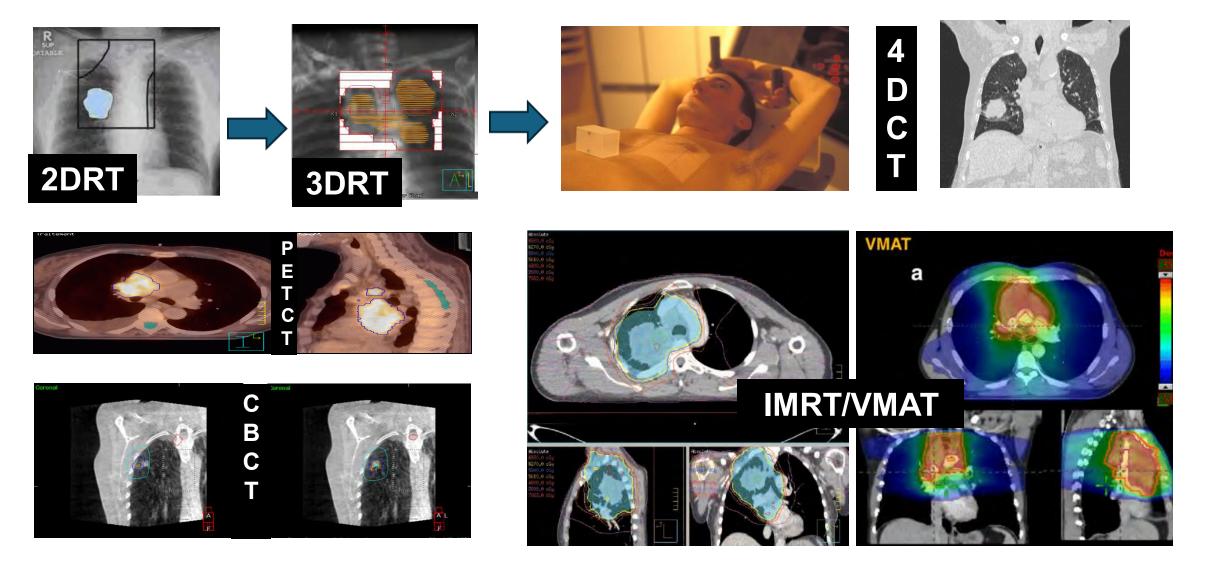


Ongoing Phase III Trials of SBRT ± Checkpoint Inhibitors for NSCLC Stage IA-IB Stage I NSCLC (Inoperable or Refuse Surgery) PACIFIC 4 Keynote 867 **SWOG 1914** SBRT ± durvalumab SBRT ± pembrolizumab SBRT ± atezolizumab (24 months) (17 cycles) (8 cycles) Primary Outcome= PFS Primary Outcome= EFS Primary Outcome = OS Secondary Outcome = OS Secondary Outcome = OS Secondary Outcome = PFS Sample Size = 706 Sample Size = 530 Sample Size = 480 **Opened March 2019 Opened June 2019 Opened March 2020** NCT03833154 NCT03924869 NCT04214262


Need for larger phase 3 study, excluding driver mutations, double-blinded or placebocontrolled, with masked independent central review of imaging

Q5- can PDL1 be used as a biomarker?

Locally advanced NSCLC



Drug-RT combination

Importance of the quality of RT

Impact on toxicity of CTRT

Study Year	N	Inclusion	Staging PET-	Treatment regimen	RT technique	Toxicity
publication			СТ	in standard CRT arm		
RTOG 9410	610	Inoperable stage II-III	0	63 Gy	2DRT	Grade ≥3 oesophagitis 22%
2011				cisplatin-vinblastine		Grade ≥3 acute RP 4%
						Grade 5 toxicity 2%
Auperin meta	603 concurrent	Unresectable stage III	0	60 Gy (2 tirals), 66 Gy (1 trial), 66 Gy in 24 fractions (1 trial), 56	3DCRT in 1 trial	Grade ≥3 oesophagitis 18%
analysis 2010	602 sequential			Gy split course (1 trial), 48.5 Gy (split course of 36 Gy in 12 fractions, 7 days' rest, 12.5 Gy in 5 fractions)	Remainder 2DRT	(concurrent CRT)
2010				Single agent low-dose cisplatin (2 trials), cisplatin-based doublet (3 trials), carboplatin (1 trials)		Rates of acute pneumonitis and grade 5 toxicity NR
PROCLAIM	598	Unresectable	82%	60-66 Gy	25% IMRT	Grade≥3 oesophagitis 15.5%
2016		Non squamous stage III		et oposide-cisplatin	(remainder 3DCRT)	Grade ≥3 pneumonitis 1.8/2.6 %
				Consolidation in both arms		Grade 5 toxicity 1.7/1%
RTOG 0617	424 analysable	Unresectable stage III	91%	60 Gy concurrent carboplatin-paclitaxel	46/47% IMRT	Grade ≥3 oesophagitis 7%
2015	for RT end-point			followed by 2 cycles consolidation	in 60/74 Gy arms (remainder 3DCRT)	Grade ≥3 pneumonitis 7%
						Grade 5 toxicity 3%
KCSG-LU05-04	437	Unresectable stage III	92%	66 Gy concurrent docetaxel-cisplatin	Not reported	Grade ≥3 oesophagitis 9.5%
2015				Arm A: CRT - observation		Grade ≥3 pneumonitis 1.2%
						Grade 5 toxicity 3.6% during CRT, 2.9% during consolidation

Impact of local control on overall survival

CHART

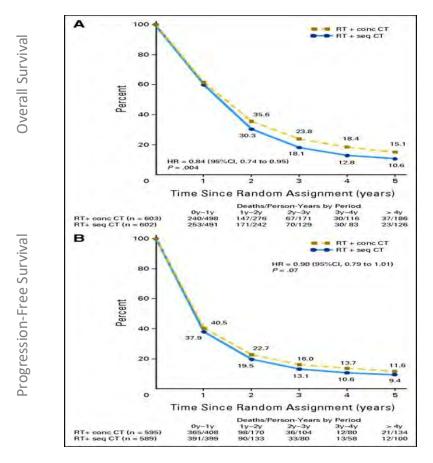
Saunders et al. Lancet 2010

- 60 Gy/30# OD vs. 54 Gy/36# TDS
- HR local progression 0.77 (p=0.027, 95% 0.61–0.97)
- HR death 0.76 (p=0.004, 95% CI 0.63–0.92)

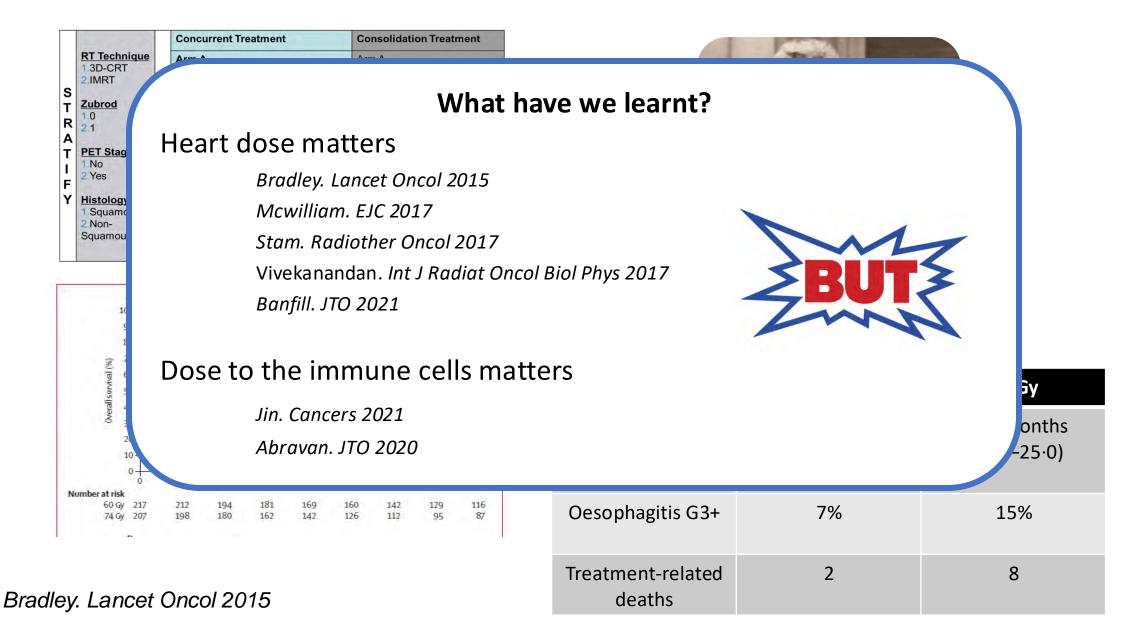
NSCLCCG Meta-analysis

Auperin et al. JCO 2010

(6 trials, 1205 patients)


- HR death 0.83 (p=0.04); absolute benefit survival 4.5% at 5 years
- HR loco-regional progression 0.77; 95% CI 0.62 to 0.95; p= 0.01); absolute survival benefit 6% at 3 years

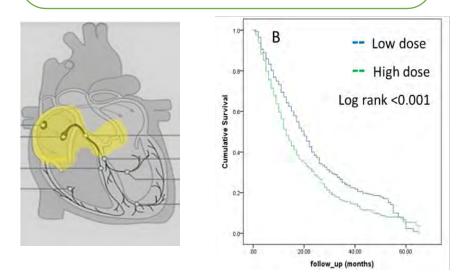
RTOG Meta-analysis


Machtay et al. JTO 2012

(7 trials, 1390 patients)

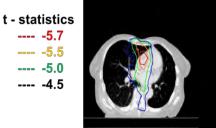
• Improved local control correlates with improved overall survival (p<0.0001)

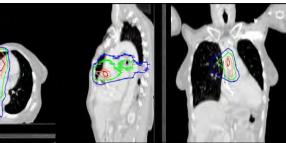
Failure of dose escalation - RTOG 0617



Radiation dose to heart base linked with poorer survival in lung cancer patients

Alan McWilliam ^{a,b,*}, Jason Kennedy ^b, Clare Hodgson ^c, Eliana Vasquez Osorio ^a, Corinne Faivre-Finn ^{a,b,1}, Marcel van Herk ^{a,b,d,1}

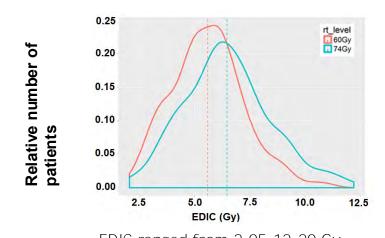

Image-based data mining


- 1101 patients
- NSCLC
- Curative intent RT, 55Gy/20#

Base of the heart identified as the anatomical area associated with poor survival

European Journal of Cancer 85 (2017) 106-113

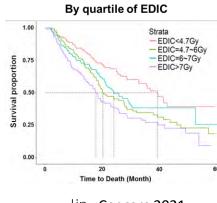
CrossMark


		Univariate		Multivariate		
		HR (95% CI)	р	HR (95% CI)	р	
Dose to defined region (> 16.3 Gy)		1.51 (1.01 – 2.27)	0.04	1.21 (1.02 – 1.44)	0.029	
Tumour siz (> median)		2.27 (1.55 – 3.32)	<0.001	1.67 (1.43 – 1.95)	<0.001	
Age		1.03 (1.01 – 1.05)	0.005	1.02 (1.01 – 1.02)	0.045	
Gender (female vs. male)		1.68 (1.19 – 2.36)	0.003	-	-	
Induction Chemotherapy (yes vs. no)		0.97 (0.62 – 1.52)	0.88	-	-	
T-Stage			0.03	-	-	
	T1	1.45 (0.92 – 2.29)	0.11			
	T2	2.19 (1.24 – 3.87)	0.007			
	Т3	2.31 (1.19 – 4.50)	0.014			
N-stage			0.003		<0.001	
	NO	0.66 (0.41 – 1.06)	0.085	0.90 (0.72 – 1.14)		
	N1	1.76 (1.08 – 2.85)	0.022	1.45 (1.20 – 1.75)		
	N2	1.86 (0.85 – 4.07)	0.12	1.64 (1.21 – 2.22)		

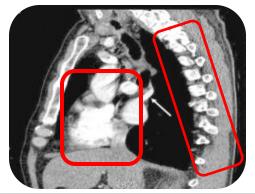
Validated in external datasets RTOG0617 and PET-plan trials

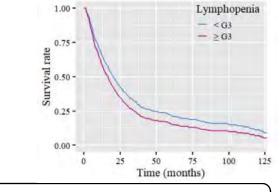
Reduction of RT dose to base of heart investigated in the prospective RAPID-RT study

Importance of radiation dose to immune cells



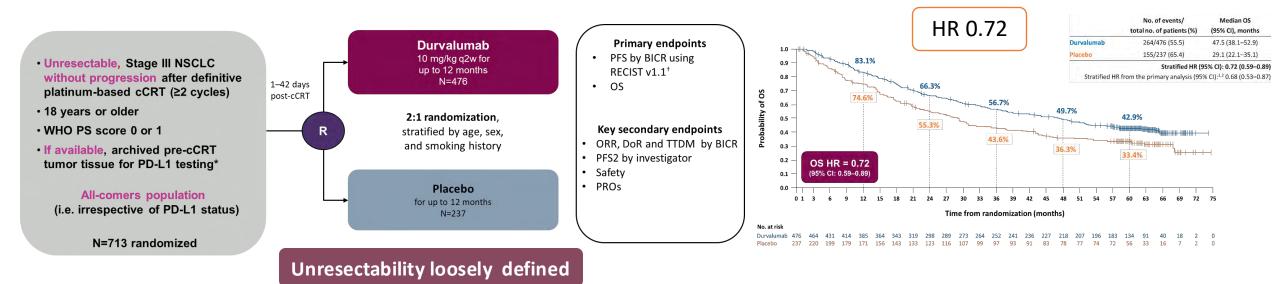
EDIC ranged from 2.05-12.20 Gy EDIC was significantly lower for the 60-Gy vs 74-Gy arm (p <0.0001)


EDIC-Effective pose to the Immune cells (RTOG017)

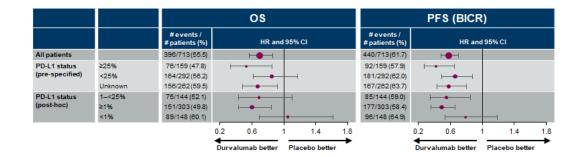

Covariate	Comparison	HR (95%CI)	p-value
Esophagitis grade 3	Grade <3 (RL) vs Grade≥3	1.55 (1.13, 2.13)	0.006
Received full chemo	No (RL) vs Yes	0.65 (0.47, 0.90)	0.01
EDIC	Continuous	1.17 (1.09, 1.25)	< 0.0001

EDIC is the strongest significant factor for OS

Jin. Cancers 2021

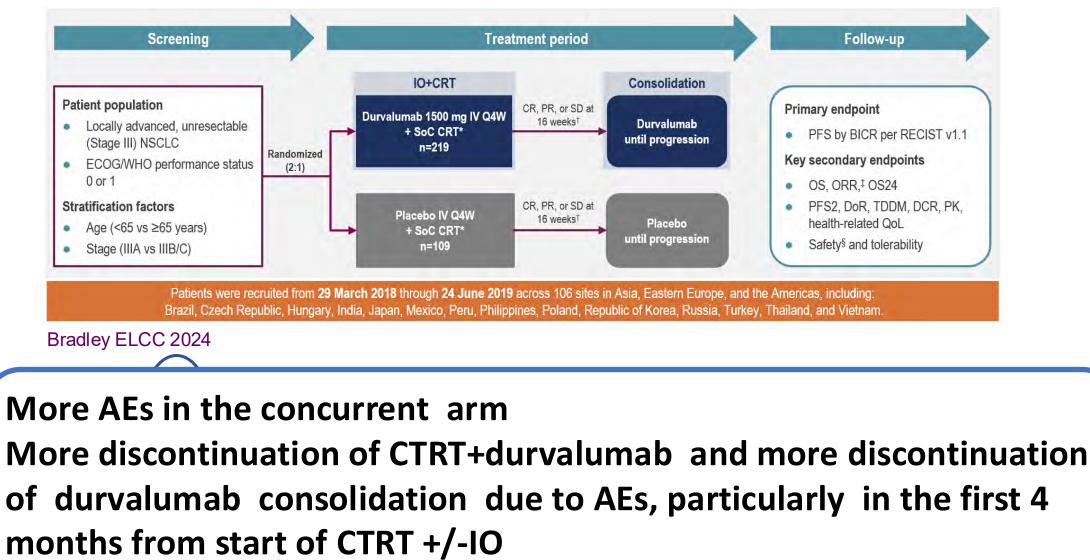

Severe lymphopenia is a poor prognostic factor for OS and could be mitigated by minimising thoracic vertebrae V20, MLD, mean heart dose

Impact of G3 lymphopenia on survival


	SCLC Cohort (n = 317)				NSCLC Cohort (n = 584)			
Parameters		HR (Univariate)	Adjusted HR (Multivariable)		HR (Univariate)	Adjusted HR (Multivariable		
Sex								
Female	160 (50.5)		-	263 (45.0)		-		
Male	157 (49.5)	1.18 (0.92-1.52, p = 0.185)	-	321 (55.0)	1.21 (1.01-1.44, p = 0.038)	-		
Age, y								
Mean (SD)	63.8 (8.9)	1.02 (1.01 - 1.04, p = 0.005)	1.01 (1.00-1.03, p = 0.144)	65.4 (10.1)	1.01 (1.00 - 1.02, p = 0.033)	-		
ECOG PS								
0	65 (20.5)		-	126 (21.6)		~		
1	172 (54.3)	1.54 (1.08-2.18, p = 0.016)	-	305 (52.3)	0.99 (0.79-1.25, p = 0.958)	-		
2	54 (17.0)	2.35 (1.55-3.57, p < 0.001)	-	91 (15.6)	1.11(0.83-1.49, p = 0.473)	-		
3	12 (3.8)	2.64(1.35.5.14, p = 0.004)	-	21 (3.6)	1.46 (0.91-2.34, p = 0.112)	-		
NA		2.12 (1.13-3.96, p = 0.019)		40 (6.9)	$1.33(0.92 \cdot 1.93, p = 0.131)$	-		
Baseline lymphocytes, ×109/liter								
Mean (SD)	2.0 (0.9)	0.80 (0.68-0.94, p = 0.007)		2.0 (4.1)	1.00 (0.98-1.02, p = 0.932)	-		
Lymphopenia grade 3								
No	174 (54.9)	-		234 (40.1)	1	And Address of The second		
Yes	143 (45.1)	1.39 (1.08-1.78, p = 0.010)	1.29 (1.00-1.67, p = 0.044)	350 (59.9)	1.17 (0.98-1.40, p = 0.018)	1.50 (1.22-1.84, p < 0.001)		
Chemotherapy	Constanting of the second			1000	and the second second second			
Radiotherapy only	38 (12.0)	1		147 (25.2)		and the set of the second second		
Concurrent	188 (59.3)	0.51 (0.35-0.73, p < 0.001)	0.46 (0.30-0.69, p < 0.001)	292 (50.0)	0.68 (0.55-0.84, p < 0.001)	$0.61 (0.45 \cdot 0.82, p = 0.001)$		
Sequential	91 (28.7)	1.24 (0.84-1.83, p = 0.281)	1.16 (0.77-1.74, p = 0.477)	145 (24.8)	1.22 (0.96-1.55, p = 0.102)	1.11 (0.87-1.42, p = 0.396)		
PTV, In								
Mean (SD)	5.9 (0.5)	1.90 (1.49-2.43, p < 0.001)	2.28 (1.73-3.00, p < 0.001)	6.0 (0.5)	1.40 (1.18-1.66, p < 0.001)	1.72 (1.43-2.07, p < 0.001)		
Prescribed dose, Gy								
Mean (SD)	52.5 (7.5)	1.00 (0.99-1.02, p = 0.987)	~	59.8 (5.5)	0.96 (0.94-0.98, p < 0.001)	0.96 (0.94-0.99, p = 0.002)		
Radiotherapy duration, d								
Mean (SD)	27.9 (11.8)	1.00 (0.99-1.01, p = 0.719)	-	35.6 (9.4)	0.98 (0.97-0.99, p < 0.001)	-		

Abravan. JTO 2020

PACIFIC -randomised, double-blind, placebo-controlled, multi-centre study

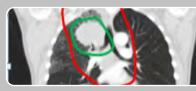

		OS			PFS (BICR)						
		# events / # patients (%)	HR and	95% CI		# events / # patients (%)		HR and	195% CI		
All patients		396/713(55.5)	⊢ ●→			440/713(61.7)	H	H			
Sex	Male	290/500 (58.0)	⊢ ●−−1			313/500(62.6)	н				
	Female	106/213(49.8)	⊢ •−−−1			127/213(59.6)					
Age at	<65 years	195/391 (49.9)	⊢● →			235/391(60.1)		1			
randomisation	≥65 years	201/322(62.4)	⊢●	4		205/322(63.7)	H	•	ł		
Smoking status	Smoker	361/649(55.6)	⊢●−1			401/649(61.8)	H				
	Non-smoker	35/64 (54.7)	⊢ • − − − − − − − − − − − − − − − − − −			39/64 (60.9)	← •──	-			
NSCLC disease	Stage IIIA	216/377(57.3)	⊢ ●−−1			223/377(59.2)					
stage	Stage IIIB	170/319(53.3)	⊢ ●−			208/319(65.2)		•			
Tumour histologic	Squamous	192/326 (58.9)	⊢ ●			212/326(65.0)					
type	All other	204/387 (52.7)				228/387 (58.9)	⊢•-	-			
Prior definitive CT	Cisplatin	203/395(51.4)	⊢ ●−−1			238/395(60.3)					
	Carboplatin	179/301 (59.5)	⊢ ●	-		189/301(62.8)		•			
Best response to	Complete response	8/16 (50.0)	NA*			9/16 (56.3)		NA*			
prior therapy	Partial response	177/349(50.7)	⊢ ●−−−1			211/349(60.5)	●				
	Stabledisease	203/338(60.1)	⊢ •−−1			214/338(63.3)	⊢ ●	<u> </u>			
EGFR mutation	Positive	24/43 (55.8)			→	32/43 (74.4)					
	Negative	261/482(54.1)	⊢● −1			290/482(60.2)		-			
	Unknown	111/188 (59.0)		<u> </u>		118/188(62.8)		•	-1		
			0.2 0.6 1	1.4	1.8		0.2 0	.6	1	1.4	1.
					→		4				-
			Durvalumab better	Placebo better	-		Durvalum:	ab better	Place	bo be	ette

Consistent benefit in most subgroups FDA-approval in all comers EMA and NICE-approval in PDL1>1%

Antonia NEJM 2017 & 2018; Faivre-Finn JTO 2021; Spigel JCO 2022

Concurrent IO and consolidation IO - PACIFIC 2

Time (Months)


Δ

Time (Months)


There was no difference in ORR between the durvalumab (60.7%; 95% CI: 53.9, 67.2) and placebo (60.6%; 95% CI: 50.7, 69.8) arms (p=0.976).

IO in stage 3 NSCLC -Outstanding questions



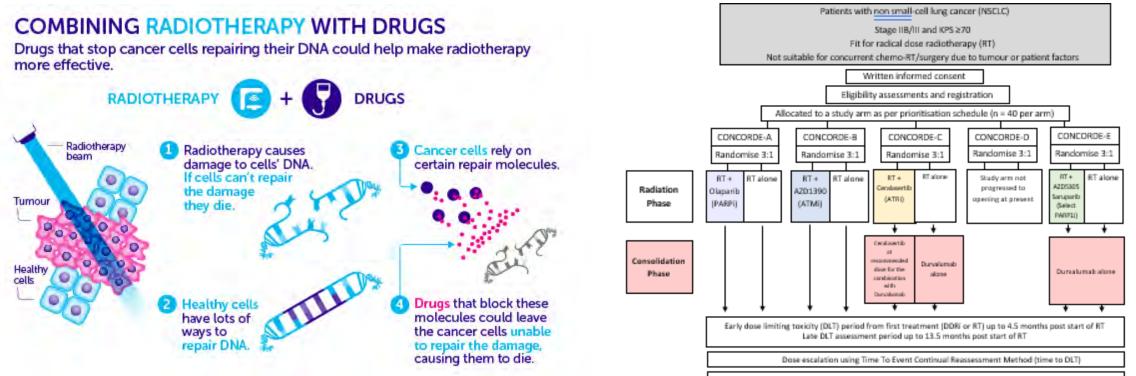
What are the optimal RT dose and schedule to enable adequate priming for immunotherapy? Target volume?

What type of immunotherapy should be used in combination with RT? What is the benefit of immunomodulators in addition to ICIs?

Beyond PDL1- Who are the patients most likely to benefit from consolidation immunotherapy post-CTRT?

Phase II and III clinical trials investigating IO and TKIs in unresectable stage III NSCLC

Ongoing studies of consolidation intensification with immunotherapy agents that target different immune checkpoint pathways beyond PD-1/PD-L1 to enhance anti-tumor responses


- **PACIFIC 9** Phase III clinical trial evaluating the efficacy of combining **durvalumab with either oleclumab** (anti-CD73) or monalizumab (Anti-NKG2A) vs durvalumab
- **PACIFIC 8** -Phase III study assessing the safety and efficacy of **durvalumab combined with domvanalimab** (Anti-TIGIT) vs durvalumab in patients PD-L1+
- SKYSCRAPER 03 Phase III assessing the efficacy of atezoluzimab + tiragolumab (Anti-TIGIT) vs single-agent durvalumab
- BTCRC LUN 16-081 Phase II trial assessing nivolumab alone versus nivolumab combined with ipilimumab (anti-CTLA4)
- CheckMate 73 L Phase III randomized study comparing the efficacy of nivolumab plus cCRT followed by nivolumab with or without ipilimumab (anti- CTLA4) versus cCRT followed by durvalumab

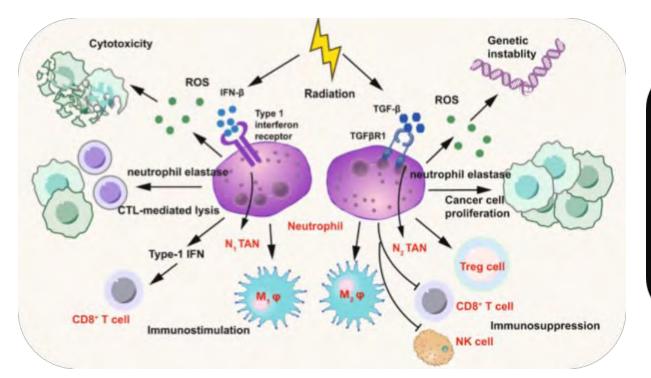
AFT-16 (NCT03102242)

BO42777 (NCT05170204)*, ALK

*Phase III trials. #In the consolidation patients receive pembrolizumab +/- olaparib. cCTRT: concurrent chemo-radiotherapy. sCTRT: sequential chemo-radiotherapy ICB: immune checkpoint blockers. TKI: tyrosine kinase inhibitors. In red trials already published / data presented.

CONCORDE trial

Patients followed up for safety and efficacy to 2 years post end of RT

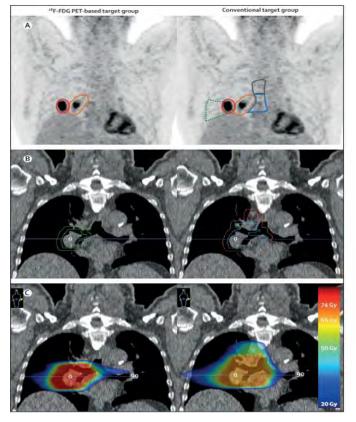


Walls. Clin Transl Radiat Oncol. 2020

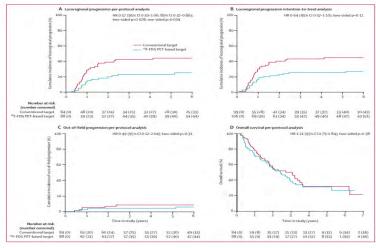
Grey areas

Q1 – Should we de-escalate dose and volume of RT?

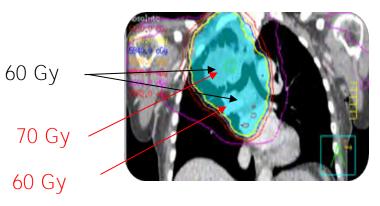
Sometimes, less is more.


BETTER MEDICINE

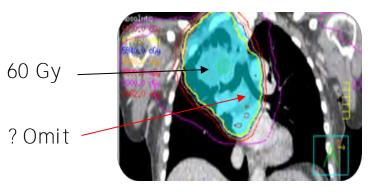
~ William Shakespeare


De-escalation of volume

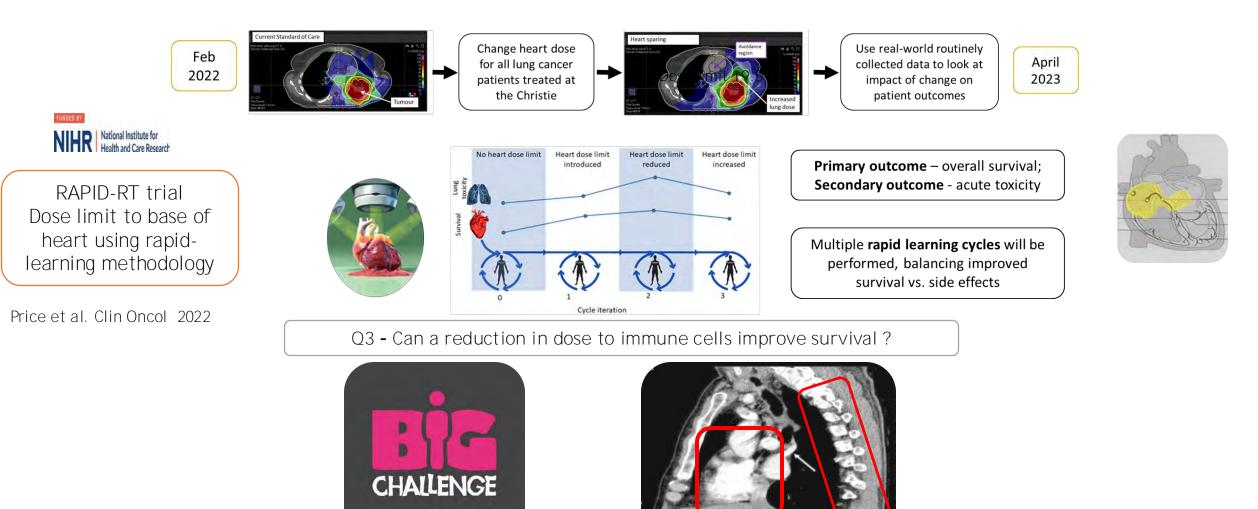
PET PLAN - 205 pts randomised Target volume delineation informed PET and CT + elective nodal irradiation or by PET alone


Nestle, Lancet Oncol 2020

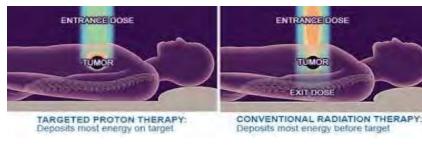
Risk of progression in the PET-group non-inferior HR 0·64 [95% CI 0·37-1·10])

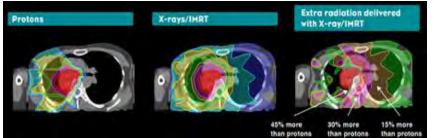

Primary endpoint: time to locoregional progression

Differential dose to nodes


Reduced oesophageal and lung toxicity No increase in regional failures

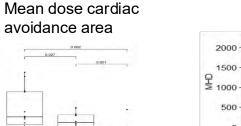
Van Diessen, Radiother Oncol 2020




De-escalation of dose to critical structures

Q2 - Can a reduction in dose to heart substructures improve survival?

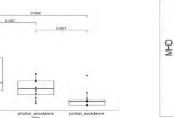
Role of protons



RCT proton vs photon No difference in mean lung dose Reduction in mean heart does No differences in outcome Liao. JCO 2018

NRG 1308 completed recruitment sept 2023

343 patients

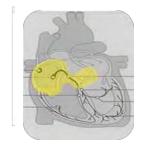

- IMRT or PBT
- Severe lymphopenia (SRL) < 0.5
- Propensity score matching performed between the IMRT and PBT groups

Heart

Q4- Can proton spare the cardiac avoidance area?

Mean Heart Dose

avoidance area


Mean dose cardiac

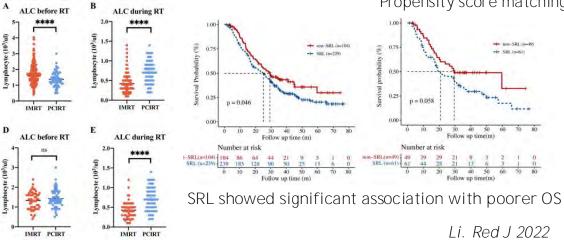
avoidance area

with proton

significantly lower

MHD significant lower in proton cardiac avoidance plans (p=0.002) 15Gy v 6Gy

Banfill ESTRO 2021

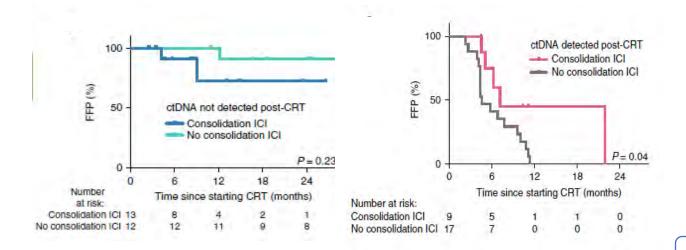

Immune system

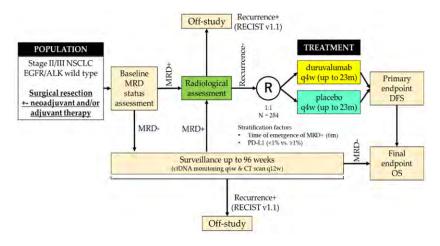
Q5- Can proton reduce the risk of severe lymphopenia?

Propensity score matching

Follow up time(m

+ non-SRL (n=49

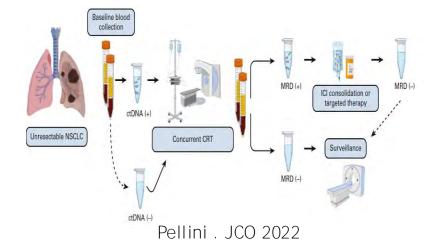

Li. Red J 2022 Risk of severe lymphopenia reduced with proton by limiting thoracic vertebra and aortic doses


non-SRL (n=10

0.25

p = 0.058

Q6- Can we better select patients for IO. Role of ctDNA?



MeRmaiD-2 trial (NCT04642469) Stage II–III NSCLC post-resection +/- neo/adjuvant therapy Patients CtDNA+ were randomised to durvalumab or placebo

Could ctDNA be predictive of benefit from CTRT and IO?

218 samples 65 patients treated with concurrent CTRT 28 received consolidation IO CtDNA-→good outcome independently of the use of consolidation IO CtDNA+→outcome improved by consolidation IO

Moding et al. Nature Cancer 2020

Conclusions

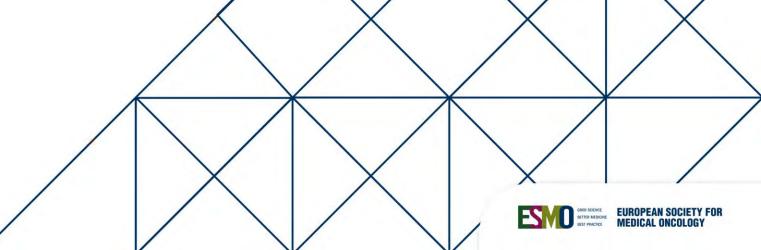
Drug-RT combination is a major opportunity in stage 1-3 NSCLC. New opportunity: ADCs and RT

Integration of IO is a major success \rightarrow strong rationale for de-escalation of RT in IO era

Dose and volume de-escalation facilitated by modern RT techniques

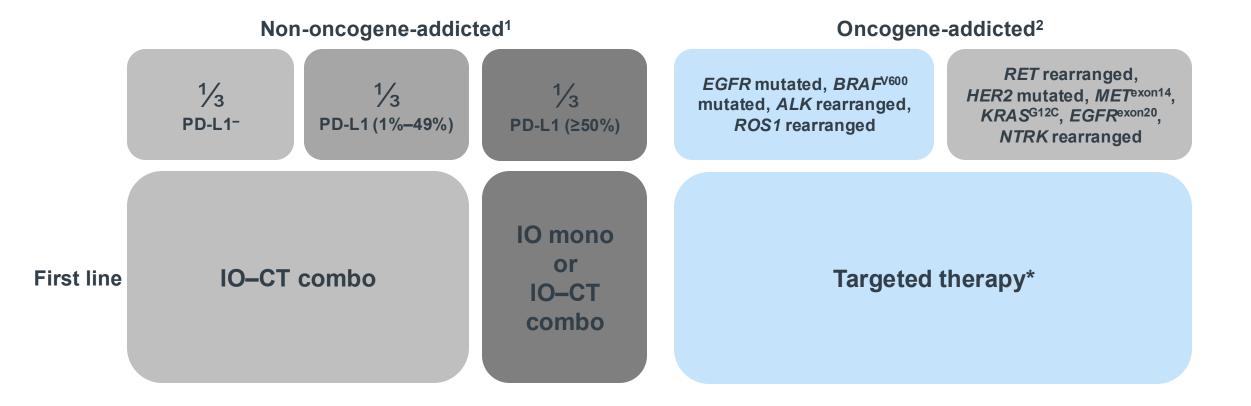
🕞 ESMO OI

Key message: enrol patients in clinical trials



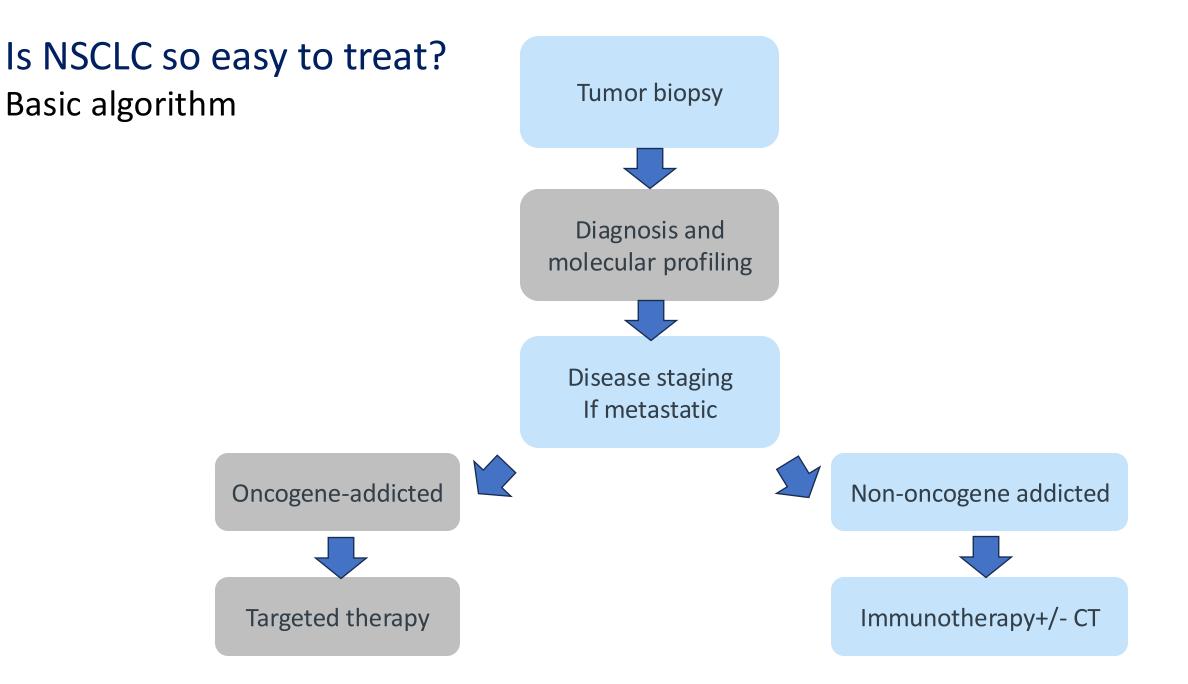
Key challenges moving from trials into practice in NSCLC

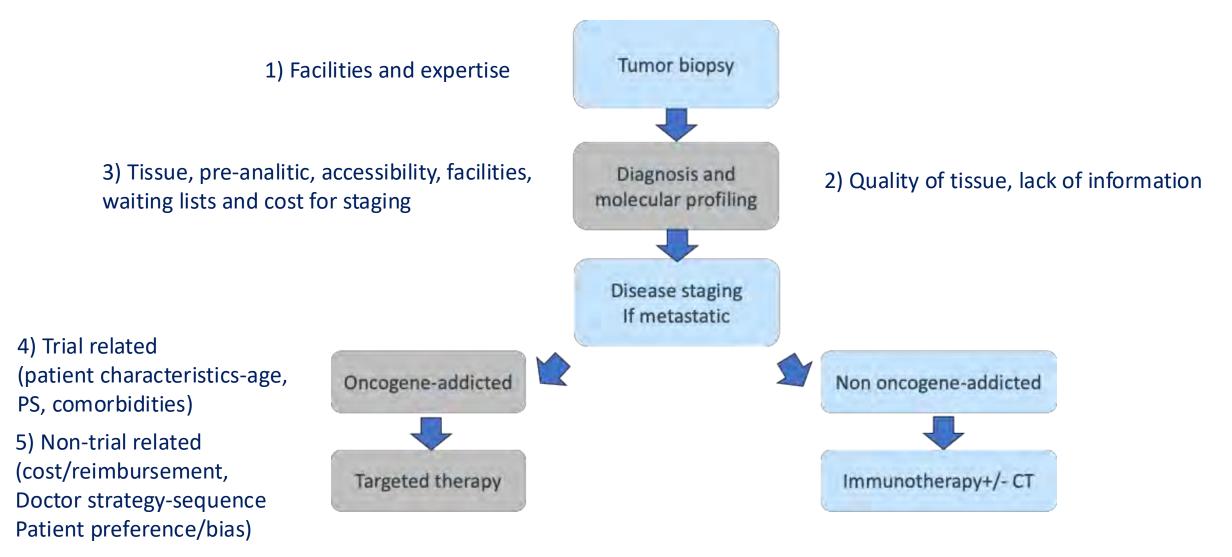
Federico Cappuzzo MD


05 March 2025

Disclosures

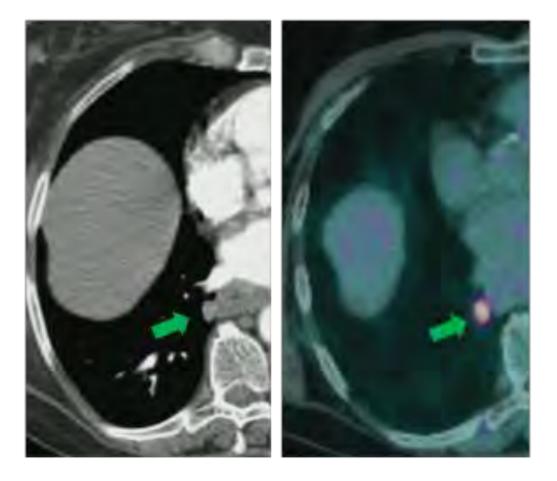
- Dr Cappuzzo discloses the following conflicts of interest:
 - Fees for membership of an advisory board or lectures from Roche, AstraZeneca, BMS, Pfizer, Takeda, Lilly, Bayer, Amgen, Sanofi, PharmaMar, Novocure, Mirati, Galecto, OSE, ThermoFisher and MSD


Treatment options for metastatic NSCLC in 2025

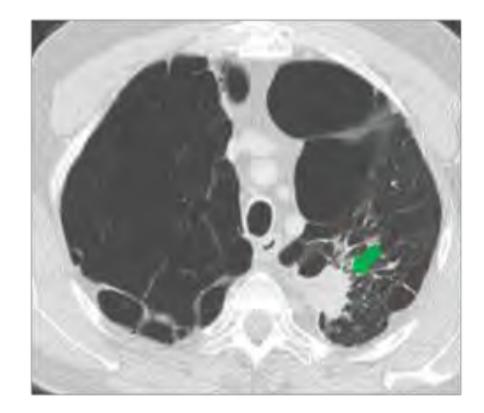

*First-line targeted therapy not approved for all indicated targets.

ALK, anaplastic lymphoma kinase; BRAF, B-Raf proto-oncogene; CT, chemotherapy; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; IO, immunotherapy; KRAS, Kirsten rat sarcoma virus; MET, mesenchymal–epithelial transition factor; NSCLC, non–small cell lung cancer; NTRK, neurotrophic tyrosine receptor kinase; PD-L1, programmed death-ligand 1; RET, rearranged during transfection proto-oncogene; ROS1, c-ros oncogene 1.

1. Hendriks LE et al. Ann Oncol 2023; 34 (4): 358–376. 2. Hendriks LE et al. Ann Oncol 2023; 34 (4): 339–357.

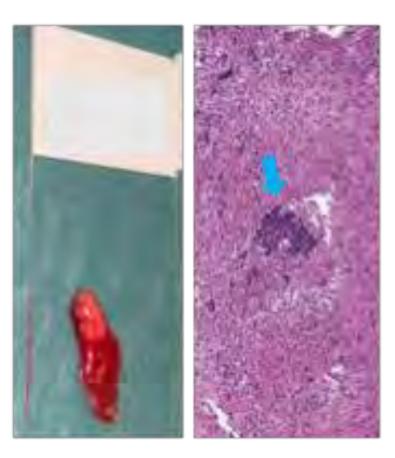


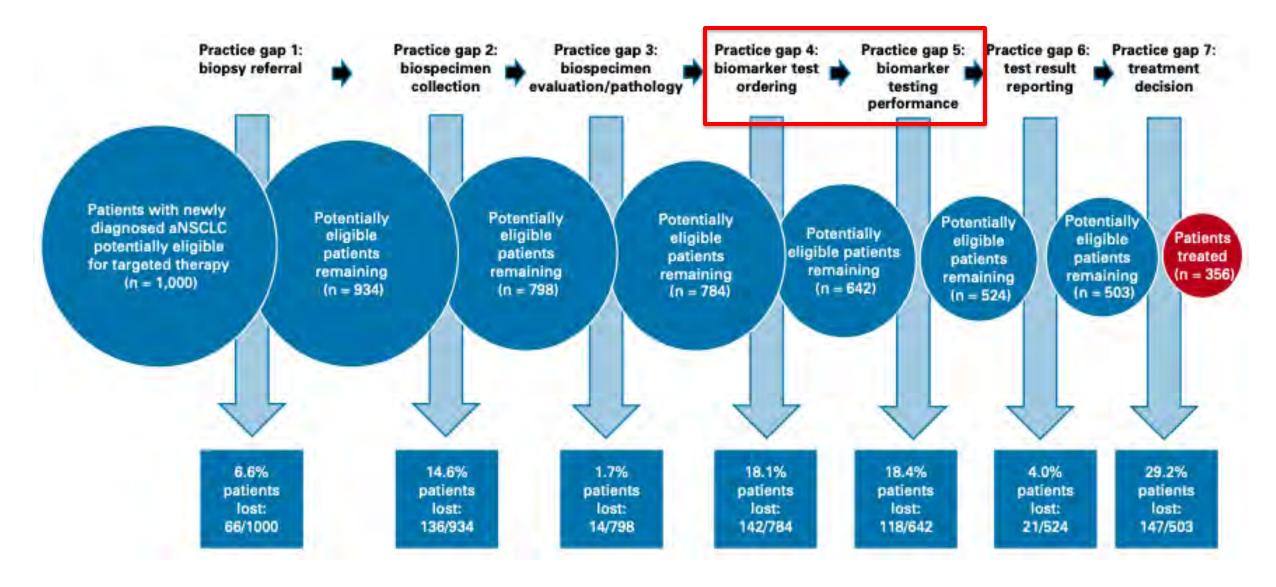
NSCLC is not easy to treat Issues in clinical practice



1: Tumor biopsy is often challenging in lung cancer

Center lacks experienced / skilled operators


Patient is unfit for undergoing a biopsy (or the biopsy indicated for that specific lesion)


Courtesy of Prof R. Trisolini

2: Quality of tissue

Biopsy is non-diagnostic or has poor quality or quantity of malignant cells (more common with needle aspiration procedures)

Biomarker test ordering or pre-analytic impact on patient loss

Sadik H, et al. JCO Prec Oncol 2022

Accurate staging often not feasible

Clinical trials have too stringent selection criteria Example of criteria required for a phase III clinical trial

4.2. Inclusion Criteria

Members of all genders, races, and ethnic groups are eligible for this study.

Participants must meet all of the following inclusion criteria to be eligible for participation in this study (no waivers for participant eligibility will be permitted).

- 1) Participants assigned male at birth and participants assigned female at birth, 18 years of age or older, able to understand and give written informed consent.
- 2) Life expectancy \geq 3 months.
- 3) Pathologically documented NSCLC that meets both of the criteria below:
 - a) Have documented evidence of Stage IV NSCLC disease at the time of enrollment (based on AJCC, Eighth Edition).
 - b) Have documented negative test results for epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutations.

Note: Tumor testing for EGFR or ALK mutations is required if status is unknown (Section 6.3.9).

- 4) Have no known genomic alterations in ROS proto-oncogene 1 (ROS1), neurotrophic tyrosine receptor kinase (NTRK), proto-oncogene B-raf (BRAF), RET mutations, or other actionable driver oncogenes with approved therapies (actionable genomic alteration). Testing is not required if status is unknown.
- 5) Provide adequate tumor tissue from locations not radiated prior to biopsy to evaluate PD-L1 status prior to randomization. Formalin-fixed specimens after the participant has been diagnosed with metastatic disease are preferred. Biopsies obtained prior to receipt of adjuvant/neoadjuvant chemotherapy will be permitted if recent biopsy is not feasible. Bone biopsies and fine needle aspirates are not suitable tissues. If no tissue is available, a new biopsy will need to be obtained prior to enrollment in the study.
- 6) Have not received prior systemic treatment for metastatic NSCLC. Participants who received adjuvant or neoadjuvant chemotherapy are eligible if the adjuvant/neoadjuvant chemotherapy was completed at least 12 months prior to the start of study treatment.

- Measurable disease by CT or MRI as per RECIST v1.1 criteria by investigator assessment (Appendix 7). Tumor lesions situated in a previously irradiated area are considered measurable if progression has been demonstrated in such lesions.
- 8) ECOG PS score of 0 or 1.
- 9) Organ function requirement:

Organ Function	Status	Parameters		
Adequate hematologic counts	$ \begin{array}{c c} \mbox{Without transfusion or growth} & \mbox{Hemoglobin} \geq 9 \mbox{ g} \\ \mbox{factor support within 2 weeks of} & \mbox{ANC} \geq 1500/mm^3, \mbox{ and} \\ \mbox{study drug initiation} & \geq 100,000/\mu L \end{array} $			
Adequate hepatic function	Bilirubin ≤ 1.5 ULN, A ALT ≤ 2.5 ULN or ≤ 5 known liver metastases, a albumin > 3 g/dl			
Creatinine clearance	÷	At least 45 mL/min (60 mL/min for participants receiving cisplatin) as assessed by the Cockcroft-Gault equation {Cockcroft 1976}		

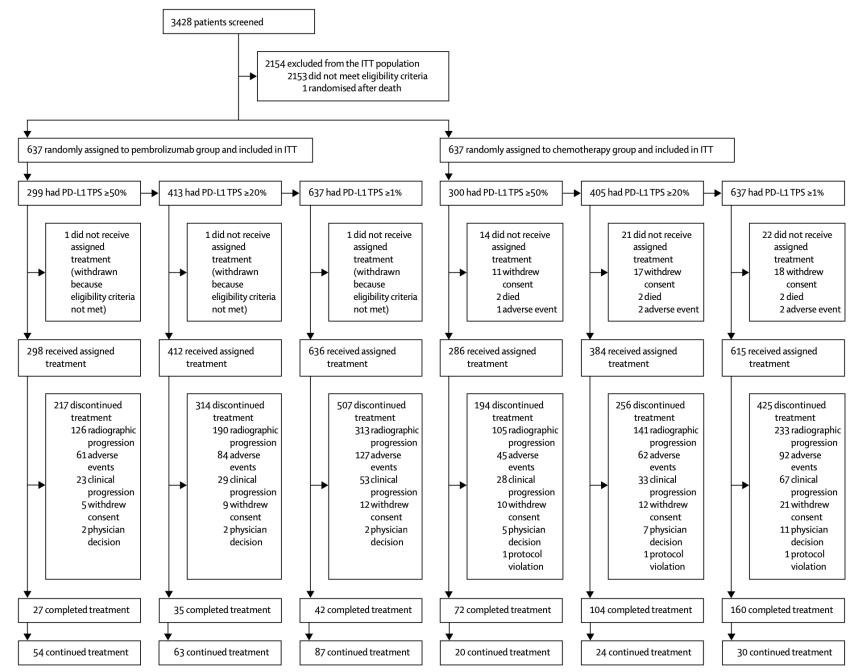
ALT = alanine aminotransferase; ANC = absolute neutrophil count; AST = aspartate aminotransferase; BMI = body mass index; ULN = upper limit of normal

Estimated creatinine clearance in mL/min calculated using the Cockcroft-Gault equation. In overweight or obese individuals (BMI = 25 or above), use of alternative body weight metrics such as ideal body weight to calculate creatinine clearance, which is likely to provide a more accurate estimate of renal function than total body weight.

10) Participants assigned male at birth and participants assigned female at birth of childbearing potential who engage in heterosexual intercourse must agree to use protocol-specified method(s) of contraception as described in Appendix 4.

11) Willing and able to comply with the requirements and restrictions in this protocol.

4.3. Exclusion Criteria


Participants who meet any of the following exclusion criteria at screening/Day -1 are not eligible to be enrolled in this study (no waivers for participant eligibility will be offered or permitted):

- 1) Have mixed small-cell lung cancer (SCLC) and NSCLC histology.
- 2) Positive serum pregnancy test or participants who are breastfeeding or have plans to breastfeed during the study period and for the required duration of contraception use after the last dose of study drug.
- 3) Received prior treatment with any anti-PD-1, anti-PD-L1, or any other antibody targeting an immune checkpoint. Participants who received PD-(L)1 inhibitors as a part of treatment for early stage NSCLC including in neoadjuvant/adjuvant setting are not eligible.

4) Known hypersensitivity to the study drug, its metabolites, or formulation excipient.

KEYNOTE 042 trial as an example

Only 37% of screened patients were included in the study

Mok T, et al. Lancet 2019

Certain patient populations are not included/under-represented

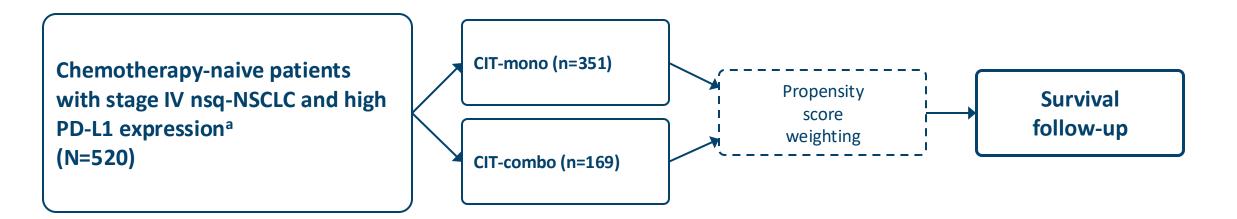
- Elderly
- PS ≥ 2
- Patients with comordities
- Brain mets (including specific brain location, number, size)

A way to select a positive population

Patients with a history of treated asymptomatic CNS metastases are eligible, provided they
meet all of the following criteria:

Only supratentorial and cerebellar metastases allowed (i.e., no metastases to midbrain, pons, medulla or spinal cord)

No ongoing requirement for corticosteroids as therapy for CNS disease


No stereotactic radiation within 7 days

No evidence of interim progression between the completion of CNS-directed therapy and the screening radiographic study

Patients with new asymptomatic CNS metastases detected at the screening scan must receive radiation therapy and/or surgery for CNS metastases. Following treatment, these patients may then be eligible without the need for an additional brain scan prior to randomization, if all other criteria are met.

ETOP study: real world data

- Primary outcome was overall survival (OS) among treatment initiators¹
- Secondary endpoints included real-world progression-free survival (rwPFS) using a clinician-anchored approach supported by radiology report data²
- Subgroup analyses were conducted to evaluate the influence of brain metastases, liver metastases and smoking history

^a PD-L1−high expression defined as TPS ≥50% by local test. Assay type was balanced between CIT-mono (86% 22C3) and CIT-combo (85% 22C3); remaining patients in each group had "Other/Unknown" assay.

1. Curtis MD, et al. Health Serv Res 2018;53(6):4460-76. 2. Griffith SD, et al. Adv Ther 2019;36(8):2122-36.

Does this study reflect the clinical scenario? Patient selection

From 24.075 initial cases

	(n=141 013) after 24	d diagnosis Oct 2016 24,075)
	De novo stage IV (n=14,635)	Relapse after initial diagnosis stage I-III (n=9440)
Attrition step	De novo stage IV NSCLC	Initial diagnosis stage I-III NSCLC
Receipt of CIT-mono or CIT-combo ^a	5168	2125
Relevant line of therapy started before 28 Feb 2019	3132	1271
Normal laboratory values	2756	1104
ECOG performance status, 0-1	1508	642
PD-L1 ≥1%	975	379
No evidence of ALK, EGFR, ROS1, BRAF	930	352
No structured activity gap	905	347
Evidence of metastatic diagnosis	905	253
Random sample	774	_
Confirmed receipt of treatment in 1L	764	191
Non-squamous histology	594	134
PD-L1 ≥50%	428	92

^a CIT-combo included platinum-doublet therapy without bevacizumab; patients participating in a clinical trial were excluded.

- Only 2,1% of initial cases included onto the analysis
- No PS2 patients
- No squamous patients

«selected» real-life

Patient selection: A potential bias in real world data

Prospective, Phase III/IV, Multicenter TAIL Study

- Stage IIIb/IV NSCLC (squamous or non-squamous)
- Progression following 1-2 lines of prior chemotherapy
- Any PD-L1 status
- Patients typically excluded from clinical trials:
 - o ECOG PS 2
 - o Prior anti–PD-1 treatment
 - o Untreated/treated asymptomatic CNS metastases
 - o Autoimmune disease
 - o HBV/HCV/HIV+
 - o Severe renal impairment

N = 619

Atezolizumab1200 mg IV q3w until loss of clinical benefit, unacceptable toxicity, investigator/patient decision to withdraw, loss of follow-up or death

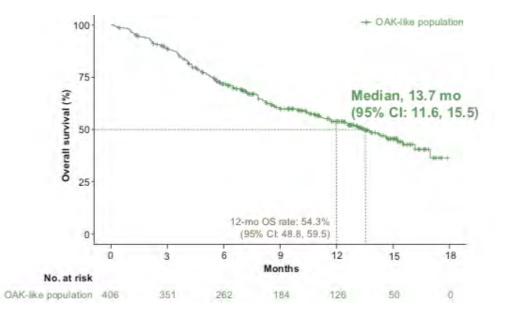
Primary endpoint (readout ≈ 6 mo after LPI):

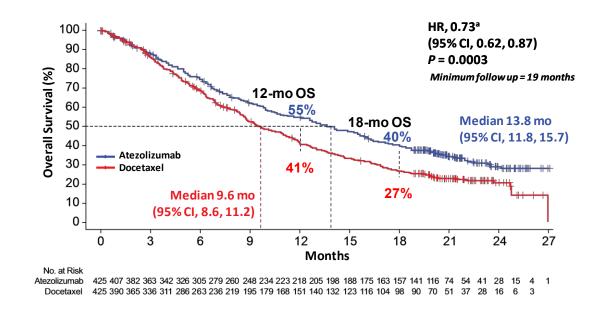
- Incidence of SAEs related to atezolizumab^a
- Incidence of irAEs related to atezolizumab^b

Secondary endpoints

- OS, OS at 6 and 12 mo, PFS, ORR, DOR
- Safety and efficacy in subgroups

Baseline Characteristics: special populations still under-represented


Characteristic	All Patients (N = 615)	Characteristic	All Patients (N = 615)
Median age (min-max), y	64.0 (24-88)	Prior chemotherapy, n (%) ^b	611 (99.3)
Male, n (%)	370 (60.2)	Prior anti–PD-1 therapy, n (%) ^c	39 (6.3)
ECOG PS, n (%)		≥ 2 prior lines of NSCLC therapy	35 (89.7)
0-1	554 (90.1)	EGFR mutation, n (%)	40 (6.5)
2	61 (9.9)	EML4-ALK rearrangement, n (%)	5 (0.8)
Stage IV at diagnosis, n (%)	581 (94.5)	PD-L1 expression on TC, n (%) ^d	
Histology, n (%) ^a		Positive (≥ 1%)	213 (34.6)
Non-squamous	462 (75.1)	Negative (< 1%)	168 (27.3)
Squamous	152 (24.7)	Unknown	234 (38.1)
Prior lines of NSCLC therapy, n (%)		CNS metastases, n (%)	89 (14.5)
1	398 (64.7)	Renal impairment, n (%) ^e	78 (12.7)
2	177 (28.8)	History of autoimmune disease, n (%)	30 (4.9)
> 2	40 (6.5)	OAK-like population, n (%) ^f	406 (66.0)


Similar efficacy to clinical trials

Patient subgroup	n	CR <i>,</i> n (%)	PR, n (%)	ORR, % (95% CI)	PFS, mo (95% Cl)	OS events, n	OS <i>,</i> mo (95% Cl)
All patients	615	3 (0.5)	65 (10.6)	11.1 (8.7,13.8)	2.7 (2.1, 2.8)	312	11.1 (8.9, 12.9)
OAK-like population	406	3 (0.7)	52 (12.8)	13.5 (10.4,17.3)	2.8 (2.7, 3.9)	181	13.7 (11.6, 15.5)

OS in OAK-like patients

OS in OAK trial

Patient selection: the Nivolumab Italian Expanded Access Program (EAP)

Outcomes from 1959 patients treated within the Italian EAP have been analyzed

• EAP-Squamous Cohort: 371 patients enrolled (Apr – Sept 2015) at 96 Institutions and treated with at least 1 dose of Nivolumab

- ✓ Median follow-up 7.1 months (range 0.1 -16.4 months)
- ✓ Median Nivolumab doses 6 (range 1-22)

• EAP-NonSquamous Cohort: 1588 patients enrolled (Jun 2015 – Apr 2016) at 153 Institutions and treated with at least 1 dose of Nivolumab

✓ Median follow-up 8.1 months (range: 1.0–27.4)

✓ Median Nivolumab doses 7 (range 1-55)

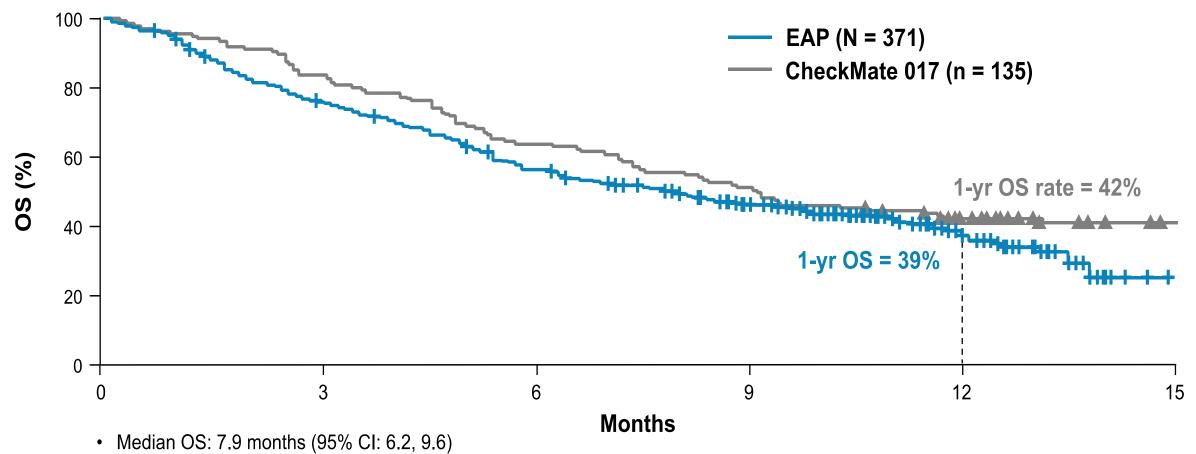
•Scientific Relevance

✓ SQ-NSCLC Italian EAP 10 abstracts presented at International Congress

✓ NSQ-NSCLC Italian EAP 11 abstracts presented at International Congress

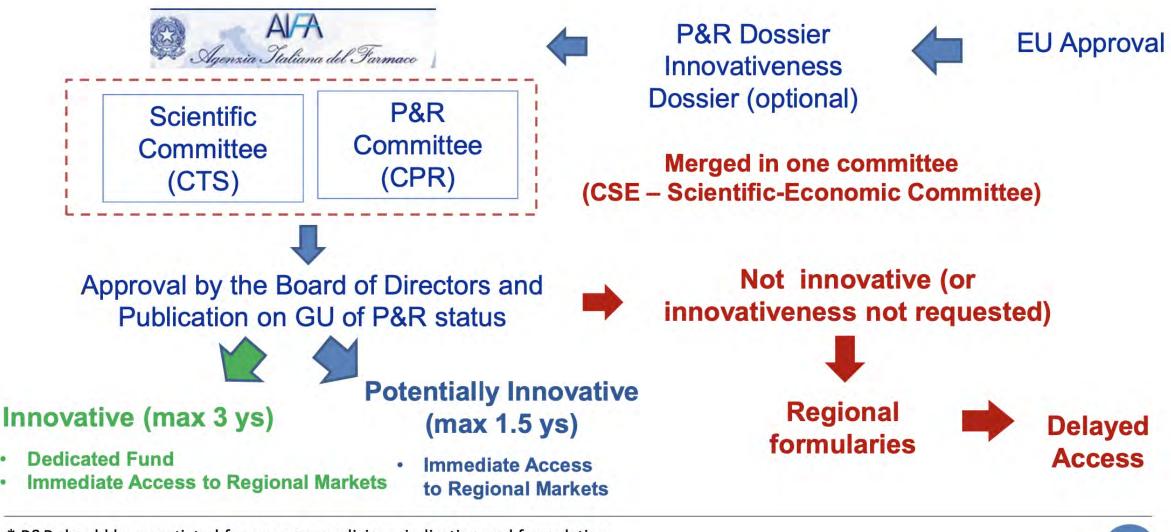
EAP Squamous cohort: similar patients characteristics to registration trial

CheckMate 017

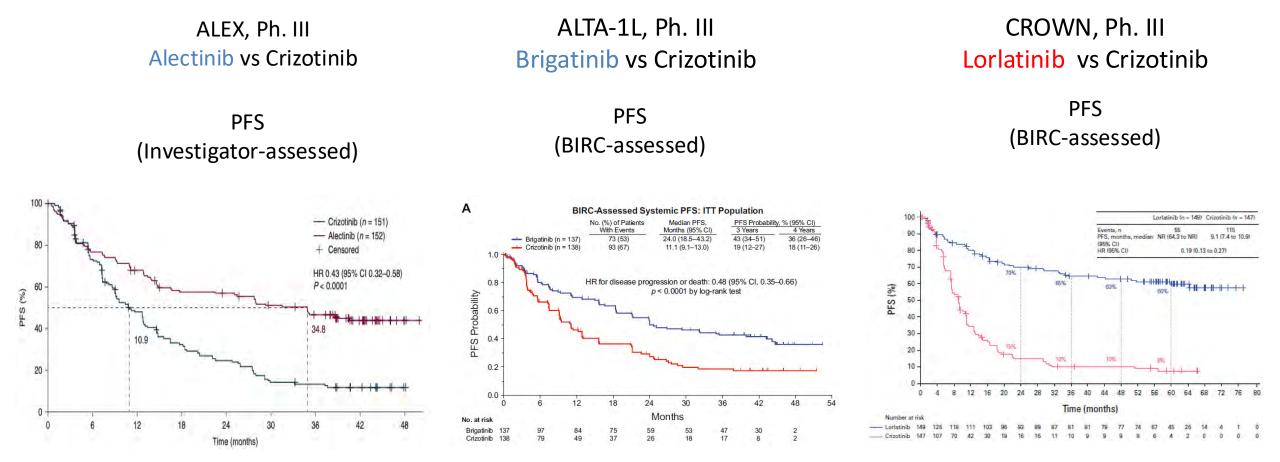

Italian EAP Squamous cohort

Characteristic	N = 371
Gender, n (%) Male Female	298 (80) 73 (20)
Median age, years (range) ≥75, n (%)	68 (31–91) 70 (19)
Smoking status, n (%) Smoker Former smoker Never smoker Unknown	83 (22) 225 (61) 31 (8) 32 (9)
ECOG PS, n (%) 0 1 2	134 (36) 215 (58) 22 (6)
Metastasis site, n (%) CNS Liver Bone	37 (10) 63 (17) 120 (32)
Number of prior therapies, n (%) 1 2 3 ≥4	162 (44) 120 (32) 68 (18) 21 (6)

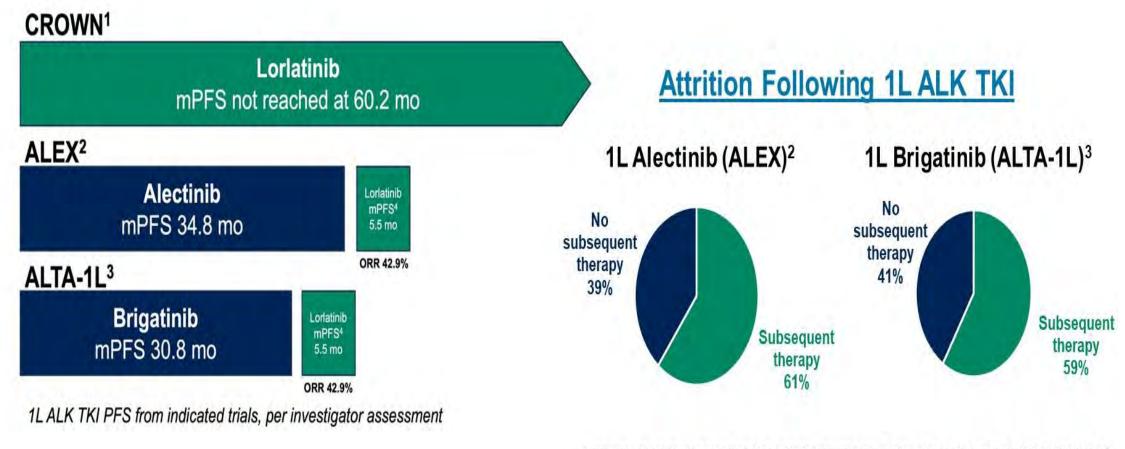
Characteristic	Nivolumab (N=135)	Docetaxel (N = 137)	Total (N=272)
Age — yr			
Median	62	64	63
Range	39-85	42-84	39-85
Age category — no. (%)			
<65 yr	79 (59)	73 (53)	152 (56)
≥65 to <75 yr	45 (33)	46 (34)	91 (33)
≥75 yr	11 (8)	18 (13)	29 (11)
Sex — no. (%)			
Male	111 (82)	97 (71)	208 (76)
Female	24 (18)	40 (29)	64 (24)
Race — no. (%)†			
White	122 (90)	130 (95)	252 (93)
Black	6 (4)	2 (1)	8 (3)
Asian	4 (3)	2 (1)	6 (2)
Other	1 (1)	2 (1)	3 (1)
Not reported	2 (1)	1 (1)	3 (1)
Disease stage — no. (%)			
IIIB	29 (21)	24 (18)	53 (19)
IV	105 (78)	112 (82)	217 (80)
Not reported	1 (1)	1 (1)	2 (1)
ECOG performance-status score — no. (%)‡			
0	27 (20)	37 (27)	64 (24)
1	106 (79)	100 (73)	206 (76)
Not reported	2 (1)	0	2 (1)
Central nervous system metastasis — no. (%)			
Yes	9 (7)	8 (6)	17 (6)
No	126 (93)	129 (94)	255 (94)
Smoking status — no. (%)			
Current or former smoker	121 (90)	129 (94)	250 (92)
Never smoked	10 (7)	7 (5)	17 (6)
Unknown	4 (3)	1 (1)	5 (2)


Crinò L, et al. WCLC 2016; Brahmer J, et al. NEJM 2015

Italian Nivolumab EAP Squamous cohort, OS similar to registration trial


• Median follow-up = 7 months

Cost/reimbursement is a relevant issue



* P&R should be negotiated for any new medicines, indication and formulation P&R: Pricing and Reimbursement; GU: Gazzetta Ufficiale

Physician strategy : the illusion of a perfect sequencing *ALK+* NSCLC as an example

The best FIRST

1. Solomon BJ et al., Lancet Respir Med 2023;11(4):354-66; 2. Mok T et al., Ann Oncol 2020;31(8):1056-64 3. Camidge DR et al., J Thorac Oncol 2021;16(12):2091-108; 4. Felip E et al., Ann Oncol 2021;32(5):620-30

Chi vuol esser lieto, sia: di doman non c'è certezza - Let who will be gay, tomorrow, none can tell

Lorenzo de' Medici, "The Magnificent" - Canzona di Bacco, Florence, 1490

Patient bias: fake news impair therapy acceptance/compliance

The spread of true and false news online

Soroush Vosoughi,¹ Deb Roy,¹ Sinan Aral^{2*}

Massachusetts Institute of Technology (MIT)

Source of information in Italy

A REAL	Newspapers 14,2%	
f	Facebook 35%	
G	Google 21,8%	
You Tube	Youtube 12,6%	

Conclusions

- Clinical practice is different to clinical trial
 - Patients are not selected using the trial criteria
 - Several subpopulations are not or minimally represented (PS2, elderly...)
- In clinical practice several factors interfere with patient journey
 - Issues for diagnosis and staging
 - Biomarker testing
 - Physician and/or patient preference
- Real world data are useful but not enough for depicting all clinical scenarios
 - Selection remains an issue
 - Quality of data often not optimal