

ESMO Webinar:

Advanced Urothelial Cancer

Tom Powles

Chair

Programme

19 February 202	25
2 minutes	Introduction and Welcome
	Tom Powles
15 minutes	Clinical Case of a patient with localised bladder cancer relapsing with metastatic dissemination: overview of epidemiology and practice patterns
	Yüksel Ürün
15 minutes	State of the art 1st Line therapy options for patients with advanced urothelial cancer
	Tom Powles
15 minutes	2nd and later line therapies: practice- and biology- informed selection of strategy
	Viktor Grünwald
15 minutes	Managing toxicities and optimising tolerability of novel treatment regimens for patients with advanced urothelial cancer
	Alison Birtle
10 minutes	Live discussion, Q&A and Conclusions
	All speakers

Thomas Powles

Chair University of London and Barts Cancer Centre

Yüksel Ürün

Speaker Ankara University School of Medicine; Department of Medical Oncology

Viktor Grünwald

Speaker University Hospital Essen Institute for medical GU Oncology

Alison Birtle

Speaker Lancashire Teaching Hospitals University of Manchester and The University of Central Lancashire

Learning Objectives

- To improve treatment decisions in the 1st and subsequent lines of therapy of patients with la/mUC due to the rapidly evolving treatment landscape
- To improve the oncologist's knowledge regarding the optimal treatment selection
- To improve the oncologist's knowledge regarding the management of potential adverse events associated with targeted therapeutic modalities

ESMO WEBINARS

Case of a Patient With Localized Bladder Cancer

Relapsing with Metastatic Dissemination:

Overview of Epidemiology and Practice Patterns

Yüksel Ürün, MD

Professor of Medicine

Ankara University School of Medicine, Dept. Of Medical Oncology

CONFLICT OF INTEREST DISCLOSURE

Advisory boards/Travel, Honoraria or consultation fees:

Abdi-**İbrahim,** Astellas, AstraZeneca, Bristol Myers-Squibb, **Deva, Eczacıbaşı, Gen ilaç,** Gilead, GSK, Janssen, Merck, MSD, Novartis, Pfizer, Roche

CASE SUMMARY - 66-YEAR-OLD MALE - Oct 2019

- Presenting Symptom: Hematuria
- Medical History: Hypertension (on Verapamil/Trandolapril)
- Smoking History: 15 pack-years, ex-smoker
- Performance Status (PS): 0
- Renal Function: eGFR: 68 mL/min

Imaging Findings

•Ultrasound (USG):

- Left bladder wall thickening
- Hypoechoic solid mass in the left bladder, suspicious for malignancy

•CT Scan:

- 51 mm solid mass in the left bladder, extension into perivesical fat
- No invasion into adjacent organs
- No evidence of distant metastasis or lymphadenopathy

CASE SUMMARY - 66-YEAR-OLD MALE - Oct 2019

Histopathology (TUR-BT Findings)

- High-grade urothelial carcinoma
- Muscularis propria invasion present

How to manage cT3 diseae?

- Radical Cystectomy + Pelvic Lymph Node Dissection
- Neoadjuvant Chemotherapy (GC/ddMVAC) followed by RS-PLND
- Neoadjuvant Gem-Cis-Durvalumab followed by RS-PLND
- Bladder-Preserving Trimodal Therapy (TMT)

CASE SUMMARY

Histopathology (TUR-BT Findings)

- High-grade urothelial carcinoma
- Muscularis propria invasion present
- cT3
- Neoadjuvant gem-cis → Radical Cystectomy + Pelvic Lymph Node

Dissection

CASE SUMMARY – JAN 2020

Histopathology (RS Findings)

- High-grade infiltrative urothelial carcinoma with extensive squamous differentiation infiltrates the full thickness of the bladder wall.
- Deep down the bladder wall, perivesical adipose tissue invasion is seen, with tumor cells infiltrating among adipocytes.
 (pT3N0)

CASE SUMMARY – 67-YEAR-OLD MALE

<u>06/2020</u>

• Femoral vein thrombosis detected on CT; treated with anticoagulation (LMWH).

<u>Aug/2020 - Nov/2023</u>

- Regular follow-ups with CT
- No signs of recurrence (NED).

CASE SUMMARY - 71-YEAR-OLD MALE - July 2024

CT of the chest shows a ~2 cm solid, nodular lesion

Large retroperitoneal nodular lesion near the left common iliac vessels

ESMO WEBINARS

CASE SUMMARY – 71-YEAR-OLD MALE - July 2024

- **Medical History:** Hypertension (on Verapamil/Trandolapril)
- Smoking History: 15 pack-years, ex-smoker
- Performance Status (PS): 1
- Renal Function: eGFR: 55 mL/min
- **CT:** metastases in lungs, liver, lymph nodes, bones, and iliopsoas muscle invasion.

Gem-Cis→Avelumab

ddMVAC→ Avelumab

Gem-Cis -nivolumab

Pembrolizumab-Enfortumab vedotin

Optimal

Treatment

Selection and

Sequencing

- **PDL1**?
- DDR-NER-ERCC1/2
- Nectin-4
- FGFR
- MSI
- HER2
- Clonal TMB/ APOBEC signature

ESMO WEBINARS

Powles T., et al. Annals of Oncology 2024

CASE SUMMARY - 71-YEAR-OLD MALE - July 2024

- **Medical History:** Hypertension (on Verapamil/Trandolapril)
- Smoking History: 15 pack-years, ex-smoker
- Performance Status (PS): 1
- Renal Function: eGFR: 55 mL/min
- CT: metastases in lungs, liver, lymph nodes, bones, and iliopsoas muscle invasion.
- 07/2024: Enfortumab Vedotin (EV) + Pembrolizumab initiated
- 09/2024: CT shows partial response (PR)—lesions in lungs, liver, lymph nodes, and pelvis reduced or resolved.
- **12/2024**: Further CT confirms **PR**
- 01/2025: New widespread lung infiltrates!
- Progression vs Toxicity?

Globocan 2022 (version 1.1) - 08.02.2024

ETIOLOGY

* moderate-to-large increase in risk

- Age
- Sex
- Tobacco smoking* The biggest risk factor (2-5x increased risk). 50% of cases!
- Occupational exposures* Chemicals in dye, rubber, printing industries.
- Arsenic in drinking water
- Chronic infection
 - TBC, longterm catheter, Schistosomiasis*
- Other factors Diabetes, obesity, chronic infections, and certain medications*.

ESMO WEBINARS

Emerging Risk Factors

•Dietary Factors:

- Western diet (processed foods, high red meat) increases risk.
- Mediterranean diet and high fiber intake lower risk.
- High coffee intake* (>500 mL/day) may increase risk.
- Tea and yogurt consumption may reduce risk.

•Microbiome:

- Loss of Lactobacillus linked to bladder cancer.
- **Dysbiosis** in the gut and urinary microbiome may contribute.

•Gene-environment interactions:

• NAT-2, GSTM1, and GSTT1 polymorphisms affect

carcinogen metabolism.

Table 1 – BC risk factor summary according to IARC monographs

Smoking	Occupational agents	
1. Tobacco smoking ^a	1. Benzidine (dye manufacturing) ^a	
Occupations	2. 4-Aminobiphenyl (dye and rubber	
1. Aluminium	manufacturing) ^a	
production ^a	3. Ortho-toluidine (dye and rubber	
2. Rubber manufactur-	manufacturing) ^a	
ing industry ^a	4. 2-Naphthylamine (dye and rubber	
3. Dye industry (ma-	manufacturing) ^a	
genta, auramine) ^a	5. 4-Chloro-ortho-toluidine ^b (dye	
4. Painter ^a	manufacturing)	
5. Firefighter ^a	6. 2-Mercaptobenzothiazole ^b (rubber	
6. Dry cleaning ^b	manufacturing)	
7. Hairdressers or	7. Tetrachloroethylene ^b (dry cleaning,	
barbers ^b	automotive, and metalwork industries)	
8. Printing processes ^b	8. Soot ^b	
9. Textile	9. Coal tar pitch ^b	
manufacturing ^b		
Environmental factors	Diseases and medications or drugs	
1. Arsenic and inorganic	1. Chlornaphazine	
arsenic compounds ^a	2. Schistosomiasis	
2. X and gamma	3. Cyclophosphamide ^a	lubber Let al. 2022
radiation ^a	4. Optum consumption ^a	
3. Outdoor air pollution	5. Pioglitazone ⁹	
4. Diesel exhaust ⁹		

ESMO WEBINARS

Estimated age-standardised incidence rates (world) in 2020, bladder, males, all ages

- North America,
- North Africa,
- West Asia.

Inttp://goo.larc.h/todayl

World Health Organization

© International Agency for

of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate borderlines for which

there may not yet be full agreement.

Jubber I., et al, 2023 EUROPEAN UROLOGY

ESMO WEBINARS

Estimated age-standardized mortality rates (World) in 2020, bladder, males, all ages

Jubber I., et al, 2023 EUROPEAN UROLOGY ESVO

All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Neakh Organization? Internation/Lagering for Research on Cancer concoming the legal states of any country territory, day or areas or of its authoritors, or concerning the delemization of its free international results. The deleta data of the sothere may not yet be full agreement.

ASR (World) per 100 000 21.3

0.97-1.3 0.71-0.97

0.43-0.71

< 0.43

Not applicable

No data

Data source: GLOBOCAN 2020 Map production: MRC thtsp://genilarc.brinday World Health Organization

manization © International Agency for Research on Carloer 2020 All rights reserved

Estimated number of new cases (in thousands)

International Agency for Research on Cancer World Health Organization Jubber I., et al, 2023 EUROPEAN UROLOGY

Preventive Strategies

- Smoking cessation/avoid passive smoking.
- Occupational safety
- Dietary changes

Avoidance of radiation exposure – Where possible, minimize pelvic RT.

Reducing air pollution and environmental

carcinogens.

Urothelial Cancer Treatments Landscape

Take-Home Messages:

Bladder Cancer Management & Future Directions

Early Diagnosis is Crucial

•Smoking remains the most significant modifiable risk factor.

Personalized Treatment is the Future

•Neoadjuvant chemotherapy \pm immunotherapy improves survival in MIBC.

Expanding Treatment Options

•Access to novel therapies is critical for better patient outcomes.

Optimal Sequencing Remains Unclear

•More data is needed to define the best treatment order.

Biomarkers (PD-L1, Nectin-4) Not Yet Standard for Therapy Selection

•Their role in guiding treatment decisions is still evolving.

Thank you!

ESMO WEBINARS

ESMO WEBINARS

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

Outlining the current 1st line landscape.

Thomas Powles

Director of Barts Cancer Center. Professor of Urology Cancer, Barts Cancer Institute.

Excluded immune phenotype in bladder cancer

Mariathasan S et al Nature 2018

Beating first line chemotherapy in bladder cancer seemed beyond us, despite terrible outcomes with chemotherapy.

	Study arm	endpoint	OS HR	OS outcome
DANUBE	Durvalumab	biomarker	0.89	-ve
	Durvalumab/tremilimumab	ITT	0.85	-ve
IMVIGOR 130	atezolizumab	Biomarker	0.68	-ve
	Atezolizumab/chemotherapy	ITT	0.83	NA
KEYNOTE	pembrolizumab	Biomarker	1.01	-ve
361	Pembrolizumab/chemotherapy	ITT	0.86	-ve

Study design

GEM/CIS/NIVO

• NIVO+GC versus GC in cisplatin-eligible patients^a

^aFurther CheckMate 901 trial design details are available at https://clinicaltrials.gov/ct2/show/NCT03036098. ^bPatients who discontinued cisplatin could be switched to gemcitabinecarboplatin for the remainder of the platinum doublet cycles (up to 6 in total). ^cA maximum of 24 months from first dose of NIVO administered as part of the NIVO+GC combination. ^dPD-L1 status was defined by the percentage of positive tumor cell membrane staining in a minimum of 100 tumor cells that could be evaluated with the use of the PD-L1 IHC 28-8 pharmDx immunohistochemical assay (Dako, Santa Clara, CA).

BICR, safety

The PFS curves for chemo + IO suggest benefit is in the maintenance phase.

The PFS curves for chemo + IO suggest benefit is in the maintenance phase.

OS (primary endpoint)

100

OS final analysis statistical boundaries:

- P value boundary, 0.0311
- Critical HR, 0.7980

Median (range) study follow-up was 33.6 (7.4-62.4) months. OS was estimated in all randomized patients and defined as the time from date of randomization to date of death from any cause. For patients without documented death, OS was censored on the last date the patient was known to be alive. For randomized patients with no follow-up, OS was censored at the date of randomization.

Objective response outcomes 70 CR 57.6% PR (51.8-63.2)60 43.1% 50 21.7% (37.5-48.9)Datients (%) 40 11.8% 30 20 35.9% 31.3% 10 0 25.3% 28.3% SD PD 9.5% 12.8% UEb 7.6% 15.8% NIVO+GC GC (N = 304)(N = 304)

Time to and duration of responses

Any objective response ^c	NIVO+GC (n = 175)	GC (n = 131)	
Median TTR (Q1-Q3), months	2.1 (2.0–2.3)	2.1 (2.0–2.2)	
Median DoR (95% CI), months	9.5 (7.6–15.1)	7.3 (5.7–8.9)	
Complete response ^d	NIVO+GC (n= 66)	GC (n = 36)	
Median TTCR (Q1-Q3), months	2.1 (1.9-2.2)	2.1 (1.9-2.2)	
Median DoCR (95% CI), months	37.1 (18.1-NE)	13.2 (7.3-18.4)	

ORR (95% CI) and BOR per BICR^a

^aIn all randomized patients. ^bThe most common reasons for UE response included death before first tumor assessment, withdrawal of consent, treatment stopped due to toxicity, patient never treated, and receipt of subsequent anticancer therapy before first tumor assessment. ^cBased on patients with an objective response per BICR (PR or CR as BOR). ^dBased on patients with a CR per BICR. BOR, best overall response; CR, complete response; DoCR, duration of complete response; DoR, duration of objective response; NE, not estimable; PD, progressive disease; PR, partial response; Q, quartile; SD, stable disease; TTCR, time to complete response; TTR, time to objective response; UE, unevaluable.

Sequencing immune therapy after chemotherapy in bladder cancer

Primary endpoint

• OS

Sequenced immune therapy was associated with a 25% reduction in death, but only half the patients made it.

BSC alone

(n=350)

287 (82.0)

2.1

(1.9-3.0)

< 0.0001

48

44

52

0

KEYNOTE-361: 1st line metastatic bladder cancer.

Overall Survival of chemo vs chemo+pembro

The Anatomy of an Antibody-Drug Conjugate: a new dawn

Antibody drug conjugate vs standard chemotherapy in bladder cancer

EV-302 Study Design

Maximum 6 cycles of gemcitabine and platinum CT in Arm B

Efficacy and Safety Endpoints:

- Dual primary endpoints (PFS by BICR and OS)
- Prespecified secondary endpoints: ORR by BICR, PFS and ORR per investigator, DOR, DCR, Safety

PRO Endpoints:

- Key secondary endpoints: Time to pain progression (TTPP), Change from baseline in BPI-SF worst pain at week 26
- Other pre-specified secondary endpoints: PROs (descriptive with no adjustment for multiplicity)

^aMaintenance therapy could be used following completion and/or discontinuation of platinum chemotherapy.

BICR, Blinded Independent Central Review; BPI-SF, Brief Pain Inventory-Short Form; CT, chemotherapy; DCR, disease control rate; DOR, duration of response; EV+P, enfortumab vedotin plus pembrolizumab; la/mUC, locally advanced or metastatic urothelial carcinoma; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PRO, patient-reported outcome; RECIST, Response Evaluation Criteria in Solid Tumours.

Progression-Free Survival per BICR

Risk of progression or death was reduced by 55% in patients who received EV+P

Data cutoff: 08 Aug 2023

Powles et al

PFS at 12 and 18 months as estimated using Kaplan-Meier method HR, hazard ratio; mPFS, median progression-free survival ^aCalculated using stratified Cox proportional hazards model; a hazard ratio <1 favors the EV+P arm

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Overall Survival Risk of death was reduced by 53% in patients who received EV+P

Confirmed Overall Response per BICR Significant improvement in objective response rate was observed with EV+P

	EV+P (N=437)	Chemotherapy (N=441)			
Confirmed ORR, n (%) (95% CI)	296 (67.7) (63.1-72.1)	196 (44.4) (39.7-49.2)			
2-sided P value	<0.00001				
Best overall response ^a , n (%)					
Complete response	127 (29.1)	55 (12.5)			
Partial response	169 (38.7)	141 (32.0)			
Stable disease	82 (18.8)	149 (33.8)			
Progressive disease	38 (8.7)	60 (13.6)			
Not evaluable/No assessment ^b	21 (4.8)	36 (8.2)			

CR, complete response; DOR, duration of response; PR, partial response

^aBest overall response according to RECIST v1.1 per BICR. CR or PR was confirmed with repeat scans ≥28 days after initial response ^bPatients had either post-baseline assessment and the best overall response was determined to be not evaluable per RECIST v1.1 or no response assessment post-baseline

Data cutoff: 08 Aug 2023

Powles et al

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

OS Subgroup Analysis: Cisplatin Eligibility OS benefit was consistent with overall population regardless of cisplatin eligibility

Chemotherapy 210 199

EV+P

Chemotherapy

184

160 139

Events r

64

120

116 86 63

 EV+P
 244
 239
 232
 225
 216
 193
 155
 131
 105
 80
 64
 42
 25
 19
 10
 6
 1
 1
 1

 Chemotherapy
 234
 224
 209
 196
 178
 147
 123
 101
 79
 57
 40
 29
 19
 15
 9
 6
 5
 2
 1

	Events, n	HR (95% CI)	mOS (95% CI), months
EV+P	69	0.53	31.5 (25.4-NR)
Chemotherapy	106	(0.39-0.72)	18.4 (16.4-27.5)

Data cutoff: 08 Aug 2023

Powles et al.

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

0.43

(0.31 - 0.59)

33

mOS (95% CI), months

NR (20.7-NR)

12.7 (11.4-15.5)

OS Subgroup Analysis: PD-L1 Expression

OS benefit was consistent with overall population regardless of PD-L1 expression status

		HR	
	Events, n	(95% CI)	mOS (95% CI), months
EV+P	79	0.49	31.5 (25.4-NR)
Chemotherapy	125	(0.37-0.66)	16.6 (13.1-20.6)

Data cutoff: 08 Aug 2023

Powles et al.

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Fluents n

53

99

EV+P

Chemotherapy

(95% Cľ

0.44 (0.31-0.61)

mOS (95% CI), months

NR (22.3-NR)

15.5 (12.9-17.7)

Subgroup Analysis of OS

OS benefit in select pre-specified subgroups was consistent with results in overall population

		Events/N			
Subgroup	EV+P Chemotherapy		Hazard Ratio (95% CI)		
Overall	133/442	226/444		0.47 (0.38-0.58)	
Age					
<65 years	39/144	58/135		0.46 (0.30-0.71)	
≥65 years	94/298	168/309	<u> </u>	0.48 (0.38-0.63)	
Sex					
Female	32/98	54/108		0.51 (0.32-0.80)	
Male	101/344	172/336	<u> </u>	0.47 (0.36-0.60)	
ECOG PS			and the second sec		
0	44/223	94/215		0.36 (0.25-0.53)	
1-2	89/219	131/227	(0.54 (0.41-0.72)	
Primary disease site of origin					
Upper tract	38/135	45/104	J	0.53 (0.34-0.83)	
Lower tract	94/305	180/339		0.46 (0.36-0.59)	
Liver metastases					
Present	43/100	67/99		0.47 (0.32-0.71)	
Absent	90/342	159/345	H-0	0.47 (0.36-0.61)	
PD-L1 expression					
Low (CPS <10)	53/184	99/185		0.44 (0.31-0.61)	
High (CPS ≥10)	79/254	125/254		0.49 (0.37-0.66)	
Cisplatin eligibility		CHARLENT.			
Eligible	69/244	106/234	F	0.53 (0.39-0.72)	
Ineligible	64/198	120/210		0.43 (0.31-0.59)	
Ineligible	64/198	120/210 0.1		0.43 (0.3 5	

Data cutoff: 08 Aug 2023

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Treatment-Related Adverse Events

Grade ≥3 events were 56% in EV+P and 70% in chemotherapy

Are there patients in whom its not safe – or shouldn't be offered therapy?

Powles et al

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

How to select patients for EVP toxicity and minimise toxicity

EXAMPLE CONSTRUCTION OF THE CARE OF THE CA

MARC S. ERNSTOFF IGOR PUZANOV CAROLINE ROBERT ADI DIAB PETER HERSEY

(sitc)

Change in Worst Pain (BPI-SF)

"Please rate your pain from 0 (no pain) to 10 (pain as bad as you can imagine) that best describes your pain at its worst in the last 24 hours."

- Although pre-defined clinically meaningful thresholds were not met in either treatment arm:
 - Patients in the EV+P arm reported improved pain compared to baseline.
 - Larger improvements in pain were demonstrated in the EV+P arm than in the CT arm.

^aNominal p-value.

BPI-SF, Brief Pain Inventory-Short Form; CT. chemotherapy; EV+P, enfortumab vedotin plus pembrolizumab; LS, least-squares; PRO, patient reported outcome.

Change in EORTC QLQ-C30 Functioning Domains

Functioning domain	EV+P LS mean (SE)	Chemotherapy LS mean (SE)		1	EV+P - Chemotherapy LS mean (95% CI)	p-value
Role functioning	-5.36 (1.23)	-9.49 (1.26)		⊢ ♦ − 1	4.13 (1.47, 6.79)	0.0024
Physical functioning	-2.63 (0.96)	-6.25 (0.99)		⊢ ← –	3.62 (1.54, 5.70)	0.0007
Social functioning	-2.94 (1.22)	-5.52 (1.25)		↓	2.57 (-0.07, 5.22)	0.0561
Global health status/QoL	-0.59 (0.99)	-3.12 (1.01)		⊢-◆1	2.54 (0.41, 4.67)	0.0197
Cognitive functioning	-0.54 (0.95)	-2.69 (0.97)		⊢ ◆−1	2.15 (0.10, 4.20)	0.0400
Emotional functioning	3.85 (0.97)	1.96 (0.98)		I → - I	1.89 (-0.19, 3.97)	0.0750
		-10	-5	0 5	10	
		F	avors Chemothe	rapy Favors EV+P		

Patients in the EV+P arm demonstrated improved functioning across all functioning domains compared to
patients in the CT arm based on change from baseline during the first 26 weeks.

CT, chemotherapy; EV+P, enfortumab vedotin plus pembrolizumab; LS, least squares; PRO, patient reported outcome; SE, standard error.

1968P

Study EV-103 Dose Escalation/Cohort A (DE/A): 5y Follow-Up of First-Line (1L) Enfortumab Vedotin (EV) + Pembrolizumab (P) in Cisplatin (Cis)-Ineligible Locally Advanced or Metastatic Urothelial Carcinoma (Ia/mUC)

Jonathan E. Rosenberg¹, Peter H. O' Donnell², Daniel Petrylak³, Thomas W. Flaig⁴, Christopher J. Hoimes⁵, Shilpa Gupta⁶, Nataliya Mar⁷, Terence W. Friedlander⁸, Scott Tagawa⁹, Mehmet Asim Bilen¹⁰, Jason Brown¹¹, Rana R. McKay¹², Jaime R. Merchan¹³, Sandy Srinivas¹⁴, Aditya Shetty¹⁵, Blanca Homet Moreno¹⁶, Griffith Davis¹⁷, Heidi S. Wirtz¹⁷, Yalin Zhu¹⁷, Matthew I. Milowsky¹⁸

Time to response and DOR in patients achieving confirmed CR or PR by BICR Figure 5. OS

OS in the Overall Population

Risk of death was reduced by almost 50%

Data cutoff: August 8, 2024.

EV, imfortianals vedoliny P, perchiphoranals Cp5, overtall auryrall. *Events/N were 2004442 for EV+P and 2071444 for chamoliteragy. *P write is normal and desirrolive

16025

ASCO Genifourinary Cancers Symposium

intsoma y Thomas B. Powles, MD.

Emeration is properly of the autors and AUCE. Processor's regard by Jacob Endorcement of Stational

Duration of Response (CR or PR) by BICR

Among responders, the probability of maintained response at 24 months was ~50% with EV+P

and the second sec	EV+P (n=437)	Chemotherapy (n=441)	Nominal two-sided P-value
Confirmed ORR (CR or PR), n (%) [95% Cl]	295 (67.5) [62.9, 71.9]	195 (44.2) [39.5, 49.0]	<0.00001b
Best overall response, n (%)			
CR	133 (30.4)	64 (14.5)	
PR	162 (37.1)	131 (29.7)	
SD	83 (19.0)	149 (33.8)	

Data cutoff: August 8, 2024.

CR, complete response; EV, enfortumab vedotin; NE, not estimable; P, pembrolizumab; PR, partial response; ORR, objective response rate; SD, stable disease.

*Events/N were 137/295 for EV+P and 129/195 for chemotherapy. *P-value is nominal and descriptive.

Patients often resumed treatment and continued to benefit following dose interruptions and reductions

Treatment Duration (months)

NECTIN-4 as a biomarker for enfortumab vedotin and pembrolizumab vs chemotherapy in the EV302 study.

EV, enfortumab vedotin; IQR, interquartile range; P, pembrolizumab. ^aIncluding all patients across both arms.

Consistent PFS Benefit with EV+P Across Nectin-4 and PD-L1 Subgroups

Data cutoff: 8 August 2023.

CPS, combined positive score; EV, enfortumab vedotin; P, pembrolizumab; PD-L1, programmed death ligand 1.

^aThe median Nectin-4 H-score was 275 across patients in both arms. ^bCPS <10. ^cCPS ≥10.

NECTIN4 amplification and response to EV monotherapy

Klumper JCO 2024

ADC in platinum advanced bladder cancer	Enfortumab Vedotin	sacituzumab Govitcan (n=113)	Disitimab Vedotin (n=109)	T-DXD (n=16)	BT8009 (n=45)	BL-B01D1 (n=27)
Target	NECTIN4	TROP-2	HER-2	HER-2	NECTIN-4	HER3/EGFR
Payload	MMAE	TOPO-1	MMAE	TOPO-1	MMAE	TOPO-1
Biomarker selection	None	None	1-3+	3+	None	None
Randomised phase III studies	301, 302,303,304 VOLGA	TROPICS-4	1st line R3 (China and Global)	None	1st line R3 Global	Planned (China)
Grade 3+ TRAEs	51%	65%	45%	45-55%	22%	52%
Response rates in platinum refractory disease	41%	28%	50%	56%	45%	41%
Response rates in combination with PD-1 therapy	68% (420)	34% (41)	75% (20)	36% (26)		The Ur developments in GU cancer
	00 /0 (420)	J 70 (+1)	10/0 (20)	50 /8 (20)		

Summary of the Niagara trial

At #UromigosLive24 we asked about PD-1 rechallenge for EVP post perioperative therapy.

When would you treat with EVP in 1st line metastatic bladder cancer after previous perioperative/adjuvant immune therapy

Yes, with no interval limit.

17%

Only if there is a > 6 month gap since the PD-(L)1 therapy

35 %

Only if there is >1 year gap since the PD-(L)1 therapy

43 %

Ongoing Phase 3 Neoadjuvant IO-based Trials in MIBC

	Clinical Trial	Ν	Treatment Arms	Eligibility					
	KEYNOTE-866	870	Pembro + GC vs GC	T2-4aN0M0					
CISPLATIN	KEYNOTE-B15/EV-304	784	Pembro +EV vs GC	T2-T4aN0M0 T1-T4aN1M0					
ELIGIBLE	NIAGARA	1050	Durva+ GC vs GC	T2-4aN0M0					
	ENERGIZE	1200	Nivo + GC vs GC	T2-4aN0M0					
	KEYNOTE-905/ EV-303	836	RC vs Pembro+EV vs Pembro	T2-4aN0M0					
CISPLATIN- INELIGIBLE	VOLGA	830	RC vs Druva/Tremi+EV vs Durva+EV	T2-4aN0M0					
	SWOG GAP	196	Surgery vs Gem-Carbo+ Avelumab	T2-4aN0M0					
	There are also RIII trials with TMT and ICI therapy: These studies may have wider influences.								

New ESMO guidelines

Highlights

- This ESMO Clinical Practice Guideline eUpdate addresses developments in first-line therapy in advanced urothelial carcinoma.
- EV+P is the new standard of care in first-line advanced urothelial carcinoma.
- Nivolumab–cisplatin–gemcitabine or platinum-based ChT and maintenance avelumab are alternatives if EV+P is not possible.

Powles T el al Annals 2024

PFS by BICR in the Overall Population

PFS benefit with EV+P was maintained with 1 additional year of follow-up

EV. enfortamento vedicile: P. premibilitytimato: PFS, progressico-finer lurvival. *Eventra'N were 282/42 for EV+P and \$17/444 for strengtherapy. *P usitive is nominal and desire

661125

ASCO Genilourinary Cancers Symposium

many Thomas B. Powles, MD.

termination is records of the public and AUCO. Thermour instant to many contribution

ASCO

OS in Prespecified Subgroups

OS benefit was consistent across prespecified subgroups

	Median OS	, months (event/N)				Median OS, m	onths (event/N)		
	EV+P	Chemotherapy		HR (95% CI)		EV+P	Chemotherapy		HR (95% CI)
Overall	33.8 (203/442)) 15.9 (297/444)	HAN I	0.513 (0.428, 0.614)	Overall	33.8 (203/442)	15.9 (297/444)	H+H	0.513 (0.428, 0.614)
Age					Liver metastases			1	
<65 years	39.3 (59/144)	18.7 (87/135)	⊢ ♠→↓	0.434 (0.307, 0.614)	Present	19.1 (68/100)	10.1 (82/99)	⊢♠⊣	0.556 (0.399, 0.776)
≥65 years	27.1 (144/298)) 14.6 (210/309)	⊢♠⊣	0.544 (0.439, 0.674)	Absent	39.3 (135/342)	18.3 (215/345)	⊢ ◆ ⊣ ¦	0.496 (0.400, 0.615)
Race					PD-L1 expression				
White	26.1 (158/308)) 15.1 (207/290)	⊢ ◆ ⊣	0.521 (0.422, 0.644)	Low (CPS <10)	31.2 (91/184)	15.1 (136/185)	⊢↓	0.472 (0.361, 0.618)
Other	36.3 (45/134)	19.1 (90/154)	⊢ ↓	0.436 (0.302, 0.629)	High (CPS ≥10)	36.5 (111/254)	17.1 (158/254)	⊷	0.550 (0.431, 0.703)
Region					Cisplatin eligibility				
North America	25.7 (57/103)	21.0 (54/85)	⊢ ◆{	0.672 (0.451, 1.000)	Eligible	36.7 (101/244)	18.7 (143/234)	⊢✦┥	0.541 (0.419, 0.699)
Europe	25.6 (90/172)	14.6 (140/197)	⊢♠⊣	0.522 (0.397, 0.687)	Ineligible	25.6 (102/198)	12.7 (154/210)	⊢ → ⊣ ¦	0.498 (0.386, 0.642)
Rest of world	NR (56/167)	15.5 (103/162)	⊢◆-1	0.386 (0.277, 0.539)	Metastatic disease	site		1	
Sex					Visceral metastase	s 25.7 (163/318)	13.5 (235/318)	⊢ + +	0.505 (0.412, 0.619)
Female	25.4 (46/98)	14.6 (70/108)	⊢╺┥	0.549 (0.371, 0.811)	Lymph node only	NR (34/103)	24.4 (54/104)	⊢ •	0.512 (0.332, 0.789)
Male	33.8 (157/344)) 16.4 (227/336)	⊢ ← ⊣ ¦	0.501 (0.407, 0.617)	Renal function				
ECOG PS			1		Normal	39.3 (33/84)	18.6 (61/95)	⊢ ,	0.496 (0.318, 0.773)
0	36.5 (77/223)	18.7 (136/215)	⊢ → ⊣	0.394 (0.296, 0.524)	Mild	36.5 (69/165)	18.4 (101/162)	⊢	0.502 (0.365, 0.689)
1-2	22.8 (126/219)) 13.3 (160/227)	⊢♠-1	0.621 (0.490, 0.787)	Moderate/severe	25.6 (101/193)	13.3 (135/187)	⊢ ♠→	0.528 (0.405, 0.689)
Primary disease	site of origin							י +	
Upper tract	36.5 (60/135)) 18.3 (63/104)	⊢ ◆−1	0.538 (0.371, 0.781)			0.1	Favors EV+P	5 Favors chemother apy
Lower tract	32.9 (142/305	5) 15.6 (233/339)	⊢♠⊣	0.504 (0.408, 0.623)					
		,							
		0.1	Favors EV+P Favo	ors chemotherapy					

Data cutoff: August 8, 2024.

CPS, combined positive score; ECOG PS, Eastern Cooperative Oncology Group performance status; EV, enfortumab vedotin; P, pembrolizumab; PD-L1, programmed death ligand 1; OS, overall survival.

39

PFS by BICR in the Overall Population

PFS benefit with EV+P was maintained with 1 additional year of follow-up

Data cutoff: August 8, 2024.

EV, enfortumab vedotin; P, pembrolizumab; PFS, progression-free survival.

^aEvents/N were 262/442 for EV+P and 317/444 for chemotherapy.^bP-value is nominal and descriptive.

41

Prof Tom Powles has the following to disclose:

- Research grants (institution): Astellas Pharma, AstraZeneca, Bristol Myers Squibb, Eisai, EMD Serono Inc., Exelixis, F. Hoffmann-La Roche, Gilead Sciences Inc., Ipsen Biopharm Limited, Johnson & Johnson Health Care Systems Inc., Merck, MSD, Novartis, Pfizer, Seagen
- Research grants (individual): Mashup Communications
- Consultancy/honoraria: Astellas Pharma, AstraZeneca, Bristol Myers Squibb, Eisai, EMD Serono Inc., Exelixis, F. Hoffmann-La Roche, Gilead Sciences Inc., Incyte Corporation, Ipsen Biopharm Limited, Johnson & Johnson Health Care Systems Inc., Mashup Communications, Merck, MSD, Novartis, Pfizer, Seagen
- **Travel and accommodation expenses**: AstraZeneca, F. Hoffmann-La Roche, Gilead Sciences Inc, Ipsen Biopharm Limited, Mashup Communications, Merck, MSD, Pfizer

Key Takeaway Points/Conclusions

We present updated results for EV-302/KEYNOTE-A39 with 1 year of additional follow-up (~2.5 years of median follow-up) and an exploratory analysis of patients with confirmed complete response (cCR)

- First-line EV+P continued to demonstrate superior efficacy compared with chemotherapy in the broad patient population and across prespecified subgroups; median OS was more than 2.5 years
- The response to EV+P was durable, with a median DOR of nearly 2 years; there was also a 74% probability of remaining in cCR at 24 months with EV+P
- Frequency and grade of TRAEs and AESIs in the EV+P arm remained consistent with the previously reported primary analysis,¹ with no new safety signals
- These results reinforce EV+P as the SOC for the first-line treatment of patients with la/mUC

AESI, adverse event of special interest; DOR, duration of response; EV, enfortumab vedotin; la/mUC, locally advanced or metastatic urothelial cancer; P, pembrolizumab; SOC, standard of care; TRAE, treatment-related adverse event. 1. Powles T, et al. N Engl J Med. 2024;390(10):875-88.
Background

- In the EV-302 primary analysis, EV+P nearly doubled mPFS and mOS in patients with previously untreated la/mUC versus platinum-based chemotherapy¹
 - mPFS was 12.5 months (95% CI: 10.4, 16.6) with EV+P vs 6.3 months (95% CI: 6.2, 6.5) with platinum-based chemotherapy¹
 - mOS was 31.5 months (95% CI: 25.4, NE) in the EV+P arm vs 16.1 months (95% CI: 13.9, 18.3) in the platinum-based chemotherapy arm¹
- Based on these results, EV+P received approvals in many countries globally²⁻⁵ and is the SOC in global treatment guidelines for patients with untreated la/mUC^{6,7}

Here, we present 1 year of additional follow-up for EV-302 (~2.5 years of median follow-up) and an exploratory analysis of patients with confirmed complete response

EV, enfortumab vedotin; la/mUC, locally advanced or metastatic urothelial cancer; mOS, median overall survival; mPFS, median progression-free survival; NE, not estimable; P, pembrolizumab; SOC, standard of care. 1. Powles T, et al. N Engl J Med. 2024;390(10):875-88. 2. PADCEV. Highlights of Prescribing Information. 2023. 3. Padcev. Summary of Product Characteristics. 2024. 4. Astellas Pharma Inc. Japan's Ministry of Health, Labour and Welfare approves PADCEV (enfortumab vedotin) with KEYTRUDA (pembrolizumab) for first-line treatment of radically unresectable urothelial carcinoma. News release. Accessed January 23, 2025. <u>https://www.astellas.com/en/news/29451</u>. 5. Pfizer Canada. Padcev (enfortumab vedotin) in combination with pembrolizumab approved by Health Canada to treat advanced bladder cancer. News release. Accessed January 23, 2025. <u>https://www.newswire.ca/news-releases/padcev-r-enfortumab-vedotin-in-combination-with-pembrolizumab-approved-by-health-canada-to-treat-advanced-bladder-cancer-862646661.html</u>. 6. Powles T, et al. ESMO Clinical Practice Guideline. Ann Oncol. 2024;35(6):485-90. 7. Witjes J, et al. EV Urol. 2024;85(1):17-31.

PFS by BICR in Prespecified Subgroups

PFS benefit was consistent across prespecified subgroups

Median PFS, months (event/N) EV+P Chemotherapy HR (95% Cl) Overall 12.5 (262/442) 6.3 (317/444) + 0.481 (0.407, 0.5 Age 0.490 (0.358, 0.6 <65 years 12.3 (175/298) 6.2 (227/309) + 0.490 (0.358, 0.6 ≥65 years 12.3 (175/298) 6.2 (227/309) + 0.492 (0.401, 0.6 Other 19.2 (71/134) 6.5 (103/154) + 0.492 (0.401, 0.6 Other 19.2 (71/134) 6.3 (57/85) + 0.605 (0.418, 0.8 Europe 10.4 (102/172) 6.3 (149/197) + 0.523 (0.403, 0.6 Rest of world 19.3 (88/167) 6.2 (111/162) + 0.505 (0.351, 0.7 Male 10.4 (59/98) 6.1 (75/108) + 0.468 (0.385, 0.50 Ecrog PS 0 0.73 (121/223) 6.7 (151/215) + 0.404 (0.314, 0.50		HR (95% CI)						
12.5 (262/442)	6.3 (317/444)		, <i>,</i> ,		EV+P	Chemotherapy		HR (95% CI)
		H♦H	0.481 (0.407, 0.570)	Overall	12.5 (262/442)	6.3 (317/444)	H I	0.481 (0.407, 0.570)
				Liver metastases				
14.6 (87/144)	6.4 (90/135)	⊢,	0.490 (0.358, 0.670)	Present	8.1 (74/100)	6.0 (80/99)	⊢₊₊	0.548 (0.392, 0.766)
12.3 (175/298)	6.2 (227/309)	⊢♣⊣	0.478 (0.390, 0.585)	Absent	16.4 (188/342)	6.4 (237/345)	⊢ ↓ ⊣ ¦	0.458 (0.376, 0.557)
				PD-L1 expression				
10.5 (191/308)	6.2 (214/290)	⊢♠⊣	0.492 (0.401, 0.604)	Low (CPS <10)	10.5 (122/184)	6.3 (131/185)	⊢ ↓ ⊣	0.517 (0.400, 0.667)
19.2 (71/134)	6.5 (103/154)	⊢	0.461 (0.335, 0.633)	High (CPS ≥10)	16.4 (138/254)	6.2 (182/254)	⊢ ♦-1	0.459 (0.365, 0.576)
				Cisplatin eligibility				
10.3 (72/103)	6.3 (57/85)	⊢_ •1	0.605 (0.418, 0.876)	Eligible	15.0 (140/244)	6.5 (155/234)	⊦◆-i ¦	0.518 (0.409, 0.655)
10.4 (102/172)	6.3 (149/197)	⊢◆⊣	0.523 (0.403, 0.678)	Ineligible	10.6 (122/198)	6.1 (162/210)	⊢ ◆ ⊣ ¦	0.455 (0.357, 0.580)
19.3 (88/167)	6.2 (111/162)	⊢,	0.376 (0.279, 0.508)	Metastatic disease s	ite			
				Visceral metastases	10.4 (203/318)	6.2 (242/318)	r∳-i ¦	0.477 (0.393, 0.579)
10.4 (59/98)	6.1 (75/108)	⊢_	0.505 (0.351, 0.727)	Lymph node only	22.1 (50/103)	8.3 (60/104)	⊢₊	0.473 (0.317, 0.704)
14.0 (203/344)	6.3 (242/336)	⊢✦⊣	0.468 (0.385, 0.569)	Renal function				
				Normal	18.7 (47/84)	6.7 (64/95)	⊢ •→	0.520 (0.350, 0.774)
17.3 (121/223)	6.7 (151/215)	⊢◆⊣	0.404 (0.314, 0.520)	Mild	12.7 (91/165)	6.3 (118/162)	⊢ → ⊣ ¦	0.477 (0.358, 0.636)
9.3 (141/219)	6.1 (166/227)	⊢◆⊣	0.555 (0.440, 0.699)	Moderate/severe	10.5 (124/193)	6.2 (135/187)	⊢ ↓ ⊣ ¦	0.493 (0.381, 0.637)
te of origin						·		· · · · · ·
12.3 (81/135)	6.2 (70/104)	⊢,	0.542 (0.384, 0.763)			0.1	Favors EV+P Favors	5 s chemotherapy
12.8 (179/305)	6.3 (246/339)	⊢◆⊣	0.462 (0.379, 0.564)				•	
	0.1		5					
b	14.6 (87/144) 12.3 (175/298) 10.5 (191/308) 19.2 (71/134) 10.3 (72/103) 10.4 (102/172) 19.3 (88/167) 10.4 (59/98) 14.0 (203/344) 17.3 (121/223) 9.3 (141/219) e of origin 12.3 (81/135) 12.8 (179/305)	14.6 (87/144) $6.4 (90/135)$ $12.3 (175/298)$ $6.2 (227/309)$ $10.5 (191/308)$ $6.2 (214/290)$ $19.2 (71/134)$ $6.5 (103/154)$ $10.3 (72/103)$ $6.3 (57/85)$ $10.4 (102/172)$ $6.3 (149/197)$ $19.3 (88/167)$ $6.2 (111/162)$ $10.4 (59/98)$ $6.1 (75/108)$ $14.0 (203/344)$ $6.3 (242/336)$ $17.3 (121/223)$ $6.7 (151/215)$ $9.3 (141/219)$ $6.1 (166/227)$ e of origin $12.3 (81/135)$ $12.8 (179/305)$ $6.3 (246/339)$	14.6 (87/144) $6.4 (90/135)$ $12.3 (175/298)$ $6.2 (227/309)$ $10.5 (191/308)$ $6.2 (214/290)$ $10.5 (191/308)$ $6.2 (214/290)$ $19.2 (71/134)$ $6.5 (103/154)$ $10.3 (72/103)$ $6.3 (57/85)$ $10.4 (102/172)$ $6.3 (149/197)$ $19.3 (88/167)$ $6.2 (111/162)$ $10.4 (59/98)$ $6.1 (75/108)$ $14.0 (203/344)$ $6.3 (242/336)$ $17.3 (121/223)$ $6.7 (151/215)$ $9.3 (141/219)$ $6.1 (166/227)$ $e of origin$ $12.3 (81/135)$ $12.3 (81/135)$ $6.2 (70/104)$ $12.8 (179/305)$ $6.3 (246/339)$	$14.6 (87/144)$ $6.4 (90/135)$ \bullet $0.490 (0.358, 0.670)$ $12.3 (175/298)$ $6.2 (227/309)$ \bullet $0.478 (0.390, 0.585)$ $10.5 (191/308)$ $6.2 (214/290)$ \bullet $0.492 (0.401, 0.604)$ $19.2 (71/134)$ $6.5 (103/154)$ \bullet $0.461 (0.335, 0.633)$ $10.3 (72/103)$ $6.3 (57/85)$ \bullet $0.605 (0.418, 0.876)$ $10.4 (102/172)$ $6.3 (149/197)$ \bullet $0.523 (0.403, 0.678)$ $19.3 (88/167)$ $6.2 (111/162)$ \bullet $0.505 (0.351, 0.727)$ $14.0 (203/344)$ $6.3 (242/336)$ \bullet $0.404 (0.314, 0.520)$ $9.3 (141/219)$ $6.1 (166/227)$ \bullet $0.555 (0.440, 0.699)$ $e of origin$ $12.3 (81/135)$ $6.2 (70/104)$ \bullet $0.542 (0.384, 0.763)$ $12.8 (179/305)$ $6.3 (246/339)$ \bullet $0.462 (0.379, 0.564)$	Liver metastases 14.6 (87/144) 6.4 (90/135) 12.3 (175/298) 6.2 (227/309) 12.3 (175/298) 6.2 (227/309) 10.5 (191/308) 6.2 (214/290) 10.5 (191/308) 6.2 (214/290) 10.5 (191/308) 6.2 (214/290) 10.5 (191/308) 6.2 (214/290) 10.5 (103/154) 1 0.461 (0.335, 0.633) High (CPS <10)	Liver metastases Liver metastases 14.6 (87/144) 6.4 (90/135) ++ 0.490 (0.358, 0.670) Present 8.1 (74/100) 12.3 (175/298) 6.2 (227/309) ++ 0.478 (0.390, 0.585) Absent 16.4 (188/342) PD-L1 expression PD-L1 expression D.5 (191/308) 6.2 (214/290) ++ 0.492 (0.401, 0.604) Low (CPS <10)	Liver metastases Liver metastases 14.6 (87/144) 6.4 (90/135) Image: constraint of the second s	Liver metastases Liver metastases 14.6 (87/144) 6.4 (90/135) Image: constraint of the second s

Data cutoff: August 8, 2024.

CPS, combined positive score; ECOG PS, Eastern Cooperative Oncology Group performance status; EV, enfortumab vedotin; P, pembrolizumab; PD-L1, programmed death ligand 1; PFS, progression-free survival.

44

OS in the Overall Population

Risk of death was reduced by almost 50%

Data cutoff: August 8, 2024.

EV, enfortumab vedotin; P, pembrolizumab; OS, overall survival.

^aEvents/N were 203/442 for EV+P and 297/444 for chemotherapy. ^bP-value is nominal and descriptive.

OS benefit was consistent across prespecified subgroups

	Median OS,	months (event/N	1)			Median OS, m	onths (event/N)		
	EV+P	Chemotherapy		HR (95% CI)		EV+P	Chemotherapy		HR (95% CI)
Overall	33.8 (203/442)	15.9 (297/444)	H#H	0.513 (0.428, 0.614)	Overall	33.8 (203/442)	15.9 (297/444)	H+H ¦	0.513 (0.428, 0.614)
Age					Liver metastases				
<65 years	39.3 (59/144)	18.7 (87/135)	⊢ •−1	0.434 (0.307, 0.614)	Present	19.1 (68/100)	10.1 (82/99)	⊢ ⊷ ⊣ ¦	0.556 (0.399, 0.776)
≥65 years	27.1 (144/298)	14.6 (210/309)	H#H	0.544 (0.439, 0.674)	Absent	39.3 (135/342)	18.3 (215/345)		0.496 (0.400, 0.615)
Race					PD-L1 expression				
White	26.1 (158/308)	15.1 (207/290)	H	0.521 (0.422, 0.644)	Low (CPS <10)	31.2 (91/184)	15.1 (136/185)	⊢ ⊷	0.472 (0.361, 0.618)
Other	36.3 (45/134)	19.1 (90/154)	⊢ •−1	0.436 (0.302, 0.629)	High (CPS ≥10)	36.5 (111/254)	17.1 (158/254)	⊢ •-1	0.550 (0.431, 0.703)
Region					Cisplatin eligibility				
North America	25.7 (57/103)	21.0 (54/85)	⊢.	0.672 (0.451, 1.000)	Eligible	36.7 (101/244)	18.7 (143/234)	⊢ ⊷_	0.541 (0.419, 0.699)
Europe	25.6 (90/172)	14.6 (140/197)	H	0.522 (0.397, 0.687)	Ineligible	25.6 (102/198)	12.7 (154/210)		0.498 (0.386, 0.642)
Rest of world	NR (56/167)	15.5 (103/162)		0.386 (0.277, 0.539)	Metastatic disease s	ite			
Sex					Visceral metastases	25.7 (163/318)	13.5 (235/318)	Here 1	0.505 (0.412, 0.619)
Female	25.4 (46/98)	14.6 (70/108)		0.549 (0.371, 0.811)	Lymph node only	NR (34/103)	24.4 (54/104)	⊢•–-i	0.512 (0.332, 0.789)
Male	33.8 (157/344)	16.4 (227/336)	H+H	0.501 (0.407, 0.617)	Renal function				
ECOG PS				1	Normal	39.3 (33/84)	18.6 (61/95)		0.496 (0.318, 0.773)
0	36.5 (77/223)	18.7 (136/215)	H	0.394 (0.296, 0.524)	Mild	36.5 (69/165)	18.4 (101/162)	⊢ i	0.502 (0.365, 0.689)
1-2	22.8 (126/219)	13.3 (160/227)	H	0.621 (0.490, 0.787)	Moderate/severe	25.6 (101/193)	13.3 (135/187)	⊢ ⊢ I	0.528 (0.405, 0.689)
Primary disease	site of origin							i	— · · · · ·
Upper tract	36.5 (60/135)	18.3 (63/104)		0.538 (0.371, 0.781)			0.1	Favors EV+P	Favors chemotherapy
Lower tract	32.9 (142/305)	15.6 (233/339)	H+H	0.504 (0.408, 0.623)				•	
				·····					
		0.1	Favors EV+P	Favors chemotherapy					

Data cutoff: August 8, 2024.

46

CPS, combined positive score; ECOG PS, Eastern Cooperative Oncology Group performance status; EV, enfortumab vedotin; P, pembrolizumab; PD-L1, programmed death ligand 1; OS, overall survival.

OS Subgroup Analysis: Cisplatin Eligibility

OS benefit was consistent with the overall population regardless of cisplatin eligibility

Cisplatin Ineligible

Cisplatin Eligible

Data cutoff: August 8, 2024.

EV, enfortumab vedotin; NE, not estimable; OS, overall survival; P, pembrolizumab.

^aEvents/N in the cisplatin-eligible population were 101/244 for EV+P and 143/234 for chemotherapy. ^bEvents/N in the cisplatin-ineligible population were 102/198 for EV+P and 154/210 for chemotherapy.

Duration of Response (CR or PR) by BICR

Among responders, the probability of maintained response at 24 months was ~50% with EV+P

<u>Confirmed ORR (CR or PR), n (%</u>) [95% CI] 295 (67.5) 62.9, 71.1	9 195 (44.2) [39.5, 49.0]	<0.00001 ^b
Best overall response, n (%)			
CR	133 (30.4)	64 (14.5)	
PR	162 (37.1)	131 (29.7)	
SD	83 (19.0)	149 (33.8)	

Data cutoff: August 8, 2024.

CR, complete response; EV, enfortumab vedotin; NE, not estimable; P, pembrolizumab; PR, partial response; ORR, objective response rate; SD, stable disease.

^aEvents/N were 137/295 for EV+P and 129/195 for chemotherapy.^bP-value is nominal and descriptive.

49

Duration of Confirmed Completed Response (cCR)^a by BICR

Probability of maintained CR at 24 months was 74% with EV+P

• For patients with cCR:

- PFS HR=0.36; 95% CI: 0.21, 0.61; estimated 24-month PFS rate: 78.2% for EV+P vs 53.7% for chemotherapy

- OS HR=0.37; 95% CI: 0.17, 0.80; estimated 24-month OS rate: 95.4% for EV+P vs 85.8% for chemotherapy

Data cutoff: August 8, 2024.

DOCR, duration of complete response; EV, enfortumab vedotin; HR, hazard ratio; NE, not estimable; NR, not reached; OS, overall survival; P, pembrolizumab; PD, disease progression; PFS, progression-free survival. ^aFor patients with a best overall response of confirmed CR. ^bEvents/N were 30/133 for EV+P and 30/64 for chemotherapy.

Duration of Confirmed Completed Response (cCR)^a by BICR

Probability of maintained CR at 24 months was 74% with EV+P

- · For patients with cCR:
 - PFS HR=0.36; 95% CI: 0.21, 0.61; estimated 24-month PFS rate: 78.2% for EV+P vs 53.7% for chemotherapy
 - OS HR=0.37; 95% CI: 0.17, 0.80; estimated 24-month OS rate: 95.4% for EV+P vs 85.8% for chemotherapy

Data cutoff: August 8, 2024.

51

DOCR, duration of complete response; EV, enfortumab vedotin; HR, hazard ratio; NE, not estimable; NR, not reached; OS, overall survival; P, pembrolizumab; PD, disease progression; PFS, progression-free survival. *For patients with a best overall response of confirmed CR. *Events/N were 30/133 for EV+P and 30/64 for chemotherapy.

ESMO WEBINARS

ADVANCED UROTHELIAL CARCINOMA

2nd and later line therapies: practice- and biology- informed selection of strategy

Viktor Grünwald, MD, PhD Carolus-endowed Professorship for interdisciplinary GU Oncology

DOI

Financial Interests

Invited Speaker, Personal: Amgen, AstraZeneca, Astellas, BMS, EISAI, Ipsen, Johnson & Johnson, Merck, MSD, Pfizer, Novartis/AAA, Telix Pharmaceutical, Roche Advisory Board, Personal: BMS, EISAI, Ipsen, Debiopharm, Gilead, Johnson & Johnson, Merck, MSD, Novartis, Oncorena, Recordati, Synthekine Stocks/Shares, Personal: Amgen, AstraZeneca, BMS, Bicycle Therapeutics, MSD, Genmab Steering Committee Member: Amgen, BMS, EISAI, Ipsen

Steering Committee Member. Amgen, bivis, EISAI, Ipsen

Research Grant, Financial interest, Institutional: AstraZeneca, BMS, MSD, Ipsen, Pfizer

Travel support: Ipsen, Johnson & Johnson, Merck, Pfizer

<u>Non-Financial Interests</u> Membership: ASCO, ESMO, German medical Oncology and Hematology Society Advisory role: German Cancer Society Leadership role: Working Group medical oncology (AIO)

HD-MVAC = dosisintensiviertes Methotrexat, Vinblastin, Adriamycin und Cisplatin, 1L: Erstlinientherapie, 2L: Zweitlinientherapie

1. Sternberg C.N. et al. Cancer 1989 Dec 15;64(12):2448-58; 2. Sternberg C.N. et al. J Clin Oncol 2001 May 15;19(10):2638-46; 3. Gemzar, https://www.ema.europa.eu/en/documents/referral/gemzar-article-30-referral-annex-ii-iii_de.pdf; 4. Javlor, https://www.ema.europa.eu/en/documents/product-information/javlor-epar-product-information_en.pdf; 5. Opdivo, https://www.ema.europa.eu/en/documents/product-information_en.pdf; 7. Keytruda, https://www.ema.europa.eu/en/documents/product-information/lecentriq-epar-product-information_en.pdf; 7. Keytruda, https://www.ema.europa.eu/en/documents/product-information/bavencio-epar-product-information/bavencio-epar-product-information/bavencio-epar-product-information_en.pdf; 8. Bavencio, <a href="https://www.ema.europa.eu/en/documents/product-information/bavencio-epar-product-information/bavencio-epar-product-information/bavencio-epar-product-information/bavencio-epar-product-information_en.pdf; 9. Powles T., N Engl J Med 2021; 384:1125-1135, DOI: 10.1056/NEJMoa2035807, 25. März 2021.. 10. Powles et al. ESMO2023: LBA6. 11. van der Heijden eet al, ESMO 2023_LBA7. 12. Loriot et al. N Engl J Med 2023;389:1961-1971 DOI: 10.1056/NEJMoa2035807, 25. März 2021.. 10. Powles et al. ESMO2023: LBA6. 11. van der Heijden eet al, ESMO 2023_LBA7. 12. Loriot DOI: 10.1056/NEJMoa2035807

23% received no 1st line treatment

ESMO WEBINARS

ESMO GUIDELINES FOR UROTHELIAL CARCINOMA After platin-based therapy

ESMO WEBINARS

ES VO

PHASE III TRIALS AFTER PLATINUM-FAILURE High-level of evidence support certain treatment options

Vinflunine vs. BSC

Pembrolizumab vs. Chemo

Bellmunt, J. et al. Annals of Oncology, Volume 24, Issue 6, 1466 - 1472 Bellmunt et al. N Engl J Med 2017;376:1015-1026 DOI: 10.1056/NEJMoa1613683

PHASE III TRIALS AFTER IO-FAILURE Permitted more than 1 previous line of therapy

Enfortumab vedotin vs. Chemo

TODAY'S PROBLEM - WHAT TO DO AFTER EV-PEM FAILURE Case report

synchronous metastatic Urothelial-Ca of the renal pelvis (UTUC) Biosy revealed pure UC iTNM: cTx, cN0, cM1 (OSS, PUL)

Osseous PD (new lesion) after 6 mo. of Enfortumab vedotin + Pembrolizumab ECOG: 0

Treatment Options:

ESMO GUIDELINES FOR UROTHELIAL CARCINOMA

ESMO WEBINARS

Powles et al. Ann Oncol 2024 https://doi.org/10.1016/j.annonc.2024.03.001

GENOMIC ALTERATIONS REQUIRE STANDARDIZED REPORTING

Nomenclature

- SNVs and indels should be reported using p. and c. notation
- Gene fusions should be reported listing both fused gene partners separated by a slash
- **CNVs** should be reported in table format as copy number GAIN or LOSS[†]
- Numerical copy number changes can be performed and reported when appropriate

Adapted from Li et al. 2017.1

	ESCAT evidence tier		Required level of evidence	Clinical implication
	I	I-A	Prospective, randomised clinical trials show the alteration-drug match in a specific tumour type results in a clinically meaningful improvement of a survival end point	Access to the treatment should be considered
Ready for routine use	Alteration-drug match is associated with improved outcome in clinical trials	I-B	Prospective, non-randomised clinical trials show the alteration-drug match in a specific tumour type, results in a clinically meaningful benefit as defined by ESMO MCBS 1.1	
		I-C	Clinical trials across tumour types or basket clinical trials show clinical benefit associated with the alteration-drug match, with similar benefit observed across tumour types	standard of care

Adapted from Mateo J et al. 2018.²

CNVs, copy number variants; ESCAT, ESMO Scale for Clinical Accountability of molecular Targets; ESMO, European Society for Medical Oncology; MCBS, Magnitude of Clinical Benefit Scale; SNVs, single nucleotide variants. †CNVs generated from NGS tests. Genomic coordinates of gene/genomic locus can be included if applicable. 1. Li MM, et al. J Mol Diagn. 2017;19(1):4–23. 2. Mateo J, et al. Ann Oncol. 2018;29(9):1895–1902. 3. Mosele MF, et al. Ann Oncol. 2024;35(7):588–606.

BOTH PCR AND NGS ARE SUITABLE FOR FGFR ALTERATION* DETECTION^{1,2}

Detects both point mutations and fusions of FGFR3⁺

CE-IVD RT-PCR assays: QIAGEN Therascreen Diatech Easy PGX

*FGFR3 mutations:

Exon7: p.R248C (c.742C>T), p.S249C (c.746C>G), p.P283S (c.847C>T), p.G299S (c.895G>A) Exon9: p.G370C (c.1108G>T, p.S371C (c.1111A>T), p.Y373C (c.1118A>G), p.G380R (c.1138G>A), p.A391E (c.1172C>A) Exon 14: p.K650E (c.1948A>G), p.K650M (c.1949A>T), p.K650Q (c.1948A>C), p.K650T (c.1949A>C) FGFR3 fusions: FGFR3: TACC 3v3, FGFR3:TACC3v1, and FGFR3:BAIAP2L1

NGS: **Thermo Fisher** Oncomine Dx Illumina TSO500

135 mutations and 21 fusions (46 gene variants) ²523 genes variants

Detects FGFR2 & 3 fusions and mutations

 $RT-PCR \rightarrow specific targets$

NGS \rightarrow the whole picture

Speak to your pathologist for more information

ESMO WEBINARS

CE-IVD, CE-marked in vitro diagnostic; FGRP, fibroblast growth factor receptor; NGS, next-generation sequencing; RT-PCR, reverse transcription polymerase chain reaction. *FGFR alterations are classed as fusions and mutations.²

11

FGFR TESTING IN THE THOR TRIAL

Adapted from Loriot Y et al. 2023.1

FGFR, fibroblast growth factor receptor; pts, patients. *At least one FGFR3 mutation or FGFR2/3 fusion was required for study inclusion 1. Loriot, Y et al. N Engl J Med. 2023;389:1961–1971.

FGFR ALTERATIONS Are enriched in the luminal-papillary subtype

Subtype		Erdafitinib		P value	
	N	ORR (95% CI)	N	ORR (95% CI)	
Non-LumP	17	41.2% [18.4%, 67.1%]	16	25.0% [10.3%, 56.0%]	
LumP	48	41.7% [27.6%, 56.8%]	71	19.7% [11.2%, 30.9%]	0.0129
ITT!	175	40.0%	176	21.6%	

ITT, Intent-to-treat; lumP, luminal papillary; non-LumP, all other subtypes excluding LumP; ORR, overall response rate.

3

SEQUENCE MATTERS IN FGFR ALTERED UC Erdafitinib is a standard of care after ICI failure

erdafitinib vs. pembrolizumab without OS benefit

Siefker-Radtke et al. Ann Oncol 2024 https://doi.org/10.1016/j.annonc.2023.10.003

mo

Loriot Y, et al. N Engl J Med. 2023;389(21):1961–1971.

NEW TREATMENT OPTIONS IN UC

Novel agents and mechanisms of action are promising

BIOPSY WHAT YOU TREAT

Placticity of cancer cells demands representative tissue for molecular assessment

ESMO WEBINARS

Klümper et al. Nat Rev 2024, in Press

UC SUBTYPES EXPRESS TARGETS DIFFERENTIALLY TROP2 and NECTIN4 expression differ between UC subtypes

(A)

	Both markers expressed	No marker expression	Only TROP2 not expressed	Only Nectin 4 not expressed	Not available	
Total number	177	5	8	15	42	
Histology						
Neuroendocrine	2 (1.1)	4 (80.0)	4 (50.0)	0		
Sarcomatoid	11 (6.2)	1 (20.0)	2 (25.0)	3 (20.0)		
Lame nested	6 (3.4)	0	0	1 (6.7)		
Squamous	46 (25.8)	0	0	7 (46.7)		
Other variants		0	0	0		
Not other specified	81 (45.5)	0	2 (25.0)	4 (26.7)		P=0.0006
Molecular subtypes						
Consensus subtypes						
Basal/squamous	80 (46.2)	2 (40.0)	3 (37.5)	13 (92.9)		
Luminal nonspecified	7 (4.0)	0	0	0		
Luminal Papillary	15 (8.7)	0	0	0		
Luminal Unstable	18 (10.4)	0	0	0		
Neuroendocrine-like	2 (1.2)	2 (40.0)	4 (50.0)	0		
Stroma-rich	51 (29.5)	1 (20.0)	1 (12.5)	1 (7.1)		P<0.0001
Protein-based subtypes						
Luminal	118 (66.7)	1 (20.0)	5 (62.5)	6 (40.0)		
Basal	59 (33.3)	3 (60.0)	1 (12.5)	9 (60.0)		
Double negative	0	1 (20.0)	2 (25.0)	0		P<0.0001
FGFR3 alteration status						
Altered	19 (10.7)	0	0	3 (20.0)		
Wild type	159 (89.3)	5 (100.00)	8 (100.0)	12 (80.0)		P=0.26
PD-L1 assessment						
Immune cell score (IC)						
IC < 5%	118 (66.3)	4 (80.0)	6 (75.0)	9 (60.0)		
IC ≥ 5%	60 (33.7)	2 (20.0)	2 (25.0)	6 (40.0)		P=0.80
Combined Positive Score (CPS)						
CPS < 10	99 (55.6)	3 (60.0)	6 (75.0)	9 (60.0)		
CPS ≥ 10	79 (44,4)	2 (40.0)	2 (25.0)	6 (40.0)		P=0.72

Olah et al. BJU Int 2025 doi: 10.1111/bju.16643.

Bahlinger et al. Histopathology, First published: 09 January 2024, DOI: (10.1111/his.15130)

SACITUZUMAB GOVITECAN – EARLY TRIALS Showed promising activity after platin- and ICI-failure

*Median follow-up of 10.5 months; Data presented at ASCO GU 2023.²

1. Tagawa ST, et al. *J Clin Oncol* 2021;39(22):2474-2485; 2. Tagawa ST, et al. Presented at ASCO GU 2023 (abstract ID 526). 3. Sacituzumab govitecan, Prescribing information,

Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761137s018.pdf Accessed September 2023

TROPICS04 (PHASE III) AFTER PLATIN AND IO-FAILURE Sacituzumab govitecan is not superior to chemotherapy

ESMO WEBINARS

9

HER2 EXPRESSION IS ASSOCIATED WITH RESPONSE TO TRASTUZUMAB DERUXTECAN HER2 is a putative selector for ADC therapy

Scherrer et al. 2022 Oct 21:12:1011885. doi: 10.3389/fonc.2022.1011885.

ESMO WEBINARS

Meric-Bernstam et al, JCO, 2024

CONCLUSIONS

- . ICI, chemo, ADC and FGFRi are standard options after platinum-failure
- . Changes in treatment landscape led to a data gap in subsequent therapies
- . In stage IV, approx. 17% of patients have FGFR alterations
- . Molecular screening is mandatory to identify those patients early
- . TROP2, NECTIN4 and HER2/3 are putative marker for future and biomarker-driven development of treatment strategies

ESMO WEBINARS

Viktor Grünwald, MD, PhD

Chair for interdisciplinary GU Oncology

NCT

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

MANAGING TOXICITIES AND OPTIMISING TOLERABILITY OF NOVEL TREATMENT REGIMENS FOR PATIENTS WITH ADVANCED UROTHELIAL CANCER

Alison J Birtle FRCP FRCR MD, Rosemere Cancer Centre, Lancs Teaching Hospitals, UK

DISCLOSURES

- Alison Birtle has attended and received honoraria for advisory boards, travel expenses to medical meetings, or served as a consultant for:
 - Accord
 - Astellas
 - AstraZeneca
 - Bayer
 - Bristol Myers Squibb
 - Janssen
 - Merck
 - Novartis
 - Pfizer
 - Sanofi Aventis
 - Roche
 - Gilead
 - Alison Birtle is a member of the UTUC and NMIBC EAU Guidelines Group, Trustee Fight Bladder Cancer, Secretary British Uro Oncology Group

Goals Gains and Pains of treatment

B Subgroup Analysis

Subgroup	Enfortumab Vedotin- Pembrolizumab	Chemotherapy	Hazard Ratio for Disease Progress	ion or Death (95% CI)
	mo (no. of events/	no. of patients)		the second s
Overall	12.5 (223/442)	6.3 (307/444)	Here	0.45 (0.38-0.54)
Age	and the second	Ser Post of the		and appendix of the
<65 yr	12.7 (75/144)	6.4 (88/135)		0.45 (0.32-0.62)
≥65 vr	12.0 (148/298)	6.2 (219/309)	(in the second se	0.45 (0.36-0.56)
Race	i	and the stand	and the second s	the second se
White	10.4 (168/308)	6.2 (207/290)		0.48 (0.39-0.60)
Other	22.3 (55/134)	6.5 (100/154)	1-0-1	0.39 (0.27-0.55)
Geographic region	C222 4.042.04	and decide and		
North America	12.0 (58/103)	6.3 (55/85)		0.56 (0.38-0.82)
Europe	10.4 (94/172)	6.3 (144/197)	h-a-d	0.50 (0.38-0.66)
Rest of the world	NE (71/167)	6.2 (108/162)		0.35 (0.26-0.48)
Sex	11-11-11-501	electron electron		and there are a
Female	10.4 (55/98)	6.1 (74/108)	H	0.49 (0.34=0.71)
Male	14.5 (168/344)	6.3 (233/336)	H-m-1	0.44 (0.36-0.54)
ECOG performance-status score	and feedback	and freedowed		
0	22.3 (93/223)	6.7 (146/215)	<u>}</u>	0.36 (0.28-0.48)
1 or 2	9.3 (130/219)	61(161/227)		0.53 (0.42-0.68)
Primary site of origin of disease	are very nerv	and a set and a		and which a short of
Upper tract	12.7 (69/135)	6.2 (70/104)	1 min 1	0.50 (0.35-0.71)
Lower tract	12.5 (152/305)	6.3 (236/339)	H-m-4	0.44 (0.35-0.54)
Liver metastases	1000 (1000 (1000)	and the stand and the		and there are d
Present	8.2 (66/100)	6.0 (78/99)		0.53 (0.38-0.76)
Absent	16.4 (157/342)	6.4 (229/345)) and	0.43 (0.35-0.52)
PD-L1 expression	Const Personal	er. Jezele		and fear seed
Low (CPS <10)	10.5 (105/184)	6.3 (127/185)	had	0.50 (0.38-0.65)
High (CPS ≥10)	18.5 (116/254)	6.2 (176/254)	1-a-d	0.42 (0.33-0.53)
Cisplatin eligibility status	and the start of	the factor of		Construction and a
Eligible	14.5 (117/244)	6.5 (149/234)		0.48 (0.38-0.62)
Ineligible	10.6 (106/198)	6.1 (158/210)	Hand I	0.43 (0.33-0.55)
Site of metastasis	same (seed seed	ere (erelerel	1.0000	The found street.
Visceral site	10.4 (176/318)	6.2 (238/318)	H-s-H	0.45 (0.37-0.55)
Lymph node only	NE (38/103)	8.3 (55/104)		0.40 (0.26-0.62)
Renal function			P	
Normal	18.7 (38/84)	6.7 (61/95)		0.46 (0.30-0.71)
Mild impairment	12.7 (79/165)	6.3 (114/162)	Hand I	0.46 (0.34-0.62)
Moderate or severe impairment	10.5 (106/193)	6.2 (132/187)	A CONTRACT OF	0.47 (0.36-0.61)
the second	and the set of set of	The Maria States	7 1 7 7 7 7 7 7 7 7	1.1.1
		0.	1 1.0	5.0

Enfortumab Vedotin-Pembrolizumab Better Chemotherapy Better

Need to proactively manage side effects to avoid stopping life extending treatments.

ESMO WEBINARS

Treatment-Related Adverse Events¹

Grade ≥3 events were 56% in EV+P and 70% in chemotherapy

Serious TRAEs:

- 122 (27.7%) EV+P
- 85 (19.6%) chemotherapy

TRAEs leading to death (per investigator): EV+P: 4 (0.9%)

- Asthenia
- Diarrhoea
- Immune-mediated lung disease
- Multiple organ dysfunction syndrome Chemotherapy: 4 (0.9%)
- Febrile neutropenia
- Myocardial infarction
- Neutropenic sepsis
- Sepsis

Median number of cycles (range): 12.0 (1,46) for EV+P; 6.0 (1,6) for chemotherapy

TRAEs shown in figure are any grade by preferred term in ≥20% of patients for any grade in either arm.

EV, Enfortumab Vedotin; P, Pembrolizumab; TRAEs, treatment-related adverse events

1. Powles T. UroToday.ESMO 2023: Oral presentation. Available from: https://www.urotoday.com/conference-highlights/esmo-2023/esmo-2023-bladder-cancer/147538-esmo-2023-ev-302-keynote-a39-enfortumab-vedotin-in-combination-with-pembrolizumabev-p-vs-chemotherapy-in-previously-untreated-locally-advanced-metastatic-urothelial-carcinoma.html [Last Accessed: August 2024].

From AE we can give more thought ...

- Poorly controlled diabetes-latest HBA1c
- NB HBa1c >/=8% excluded from EV302. Symptomatic (thirst, urinary frequency)More common if high BMI (>30kg/m2)
- Peripheral neuropathy- some patients may have had neoadjuvant treatment > 12 months ago pre-existing neuropathy due to cisplatin, Due to diabetes ?
- Skin conditions how often do we look at whole of skin in clinic.
- Renal impairment *NB no dose reductions in SmPC for GFR 15ml/min or above*
- Hepatic impairment- no data on moderate /severe
- Interstitial lung disease- often asymptomatic finding on staging scan. Co-existent COPD, use of steroids over last year (may also affect diabetic control)

LETTER TO THE ED

Re: Thomas Enfortumab Urothelial C

Enrique Grande &

Published: July 09

Meet at least out of 5

EV-302: safety outcomes – TRAEs of special interest*1,2

TRAEs of special	EV+pembro (n=440)		CT (n=433)	
interest for EV, n (%)	Any grade	Grade ≥3	Any grade	Grade ≥3
Skin reactions	294 (66.8)	68 (15.5)	60 (13.9)	1 (0.2)
Peripheral neuropathy	278 (63.2)	30 (6.8)	53 (12.2)	0
Ocular disorders	94 (21.4)	0	12 (2.8)	0
Hyperglycemia	57 (13.0)	27 (6.1)	3 (0.7)	0
Infusion-related reactions	9 (2.0)	0	9 (2.1)	0

*There are differences in the rates of skin reactions reported for EV treatment-related AESIs and pembro TEAEs of special interest because these adverse events were reported via different methodologies developed for EV and pembro monotherapies, respectively. AESI, adverse events of special interest; CT, chemotherapy; EV, enfortumab vedotin; pembro, pembro, pembrolizumab; TEAE, treatment-emergent adverse event; TRAE, treatment-related adverse event. 1. Powles T, et al. ESMO 2023 (Abstract No. LBA6 – presidential symposium); 2. Powles T, et al. N Engl J Med 2024;390:875–888.

Patient case: Starting treatment with EV

- Administered on Days 1 and 8 at a dose of 1.25 mg/kg
 - Cycle 3: The patient called the helpline about a rash itching, legs only
 - Patient was given corticosteroid cream and antihistamines
 - The patient was assessed 3 days later (at the next clinical visit) and advised to call the helpline again if symptoms worsened in the interim

٠

Management of skin toxicities (1 of 2)

Usually manifests as a maculopapular rash¹

Inspect all the skin on the body,² lymph nodes, and eyes, and check for mouth ulcers or any systemic symptoms^{1,3}

Check for a normal full blood count^{3,4}

Take a photo of the affected area⁴

Check for bites, recent travel history³, changes in detergent, etc² (i.e., do the basics!)

Avoid using antibiotics if the AE is suspected to be drug related, as it will not be beneficial NB may have been started in primary care³

Consider what may be in contact with the site of the rash (e.g., leg bag)³

ESMO WEBINARS

Management of skin toxicities (2 of 2)

Should we involve a dermatologist early? YES if: >1/3 of the skin is affected, rash involves the mucosa (e.g. eyes/mouth)/bullous lesions/exfoliation, or the patient is not responding to treatment or dose modification for the $AE^{1,2}$

Investigate which drug is the cause of the AE (if receiving 1L treatment with EV + P); a biopsy may be needed⁴

Most HCPs will know how to manage skin reactions and follow a treatment algorithm² (e.g., first-generation antihistamines, topical corticosteroids)⁴

Make sure patients look after their skin; use emollients, fragrance-free products, and sunscreen¹

Complete an SAE report for Grade ≥2 AEs*. THIS PROCESS SHOULD BE AS EASY AS POSSIBLE FOR CLINICIANS²

AE management guidelines and SmPC guidance provide information on when to refer a patient to a dermatologist; if concerned, always consider referral^{1,3}

Skin toxicities: Red flags

Skin pain ¹		
Erythroder	rma ²	
Blisters ¹		
Earlobe swelling ²		
Fever ¹		
	EV-related AE management guidelines and skin toxicity management algorithms can provide insights into other key red flags to be aware of ^{3.4}	

Disclaimer: PADCEV (enfortumab vedotin) can cause severe skin reactions, including SJS and TEN (predominantly during the first cycle of treatment).

ESMO WEBINARS

SmPC recommendations

Dose modification in patients with LA/mUC who are treated with EV

STOP

Skin reaction severity*

Dose modification*

scialised care

- Suspected SJS/TEN or bullous lesions
- Confirmed SJS/TEN
- Grade 4 or recurrent Grade 3
- Grade 2 worsening
- Grade 2 with fever
- Grade 3

ently discontinue

Immediately withhold and refer to

ld until Grade ≤1

- seterral to specialised care should be considered
- Resume at the same dose level or consider dose reduction by one dose level

Disclaimer: PADCEV (enfortumab vedotin) can cause severe skin reactions, including SJS and TEN (predominantly during the first cycle of treatment).

*Graded as per NCI CTCAE v5.0, where Grade 1 is mild, Grade 2 moderate, Grade 3 severe, and Grade 4 life threatening.

SmPC-recommended dose modifications

Recommended EV dose reductions for adverse reactions			
	Dose level	Dose modification in patients with LA/mUC who are treated with EV	
Starting dose	1.25 mg/kg up to 125 mg	Skin toxicity severity*	Dose modification*
First dose reduction	1.0 mg/kg up to 100 mg	Suspected SJS/TEN or bullous lesions	Immediately withhold and refer to specialised care
Second dose reduction	0.75 mg/kg up to 75 mg		
Third dose reduction	0.5 mg/kg up to 50 mg	Confirmed SIS/TEN	Permanently discontinue
		Grade 4 or recurrent Grade 3	
		 Grade 2 worsening Grade 2 with fever 	 Withhold until Grade ≤1 Referral to specialised care should be considered

• Grade 3

• Resume at the same dose level or consider dose reduction by one dose level

'I'm going to reduce the dose'

- Should we worry about whether EV will show continued efficacy if the dose is reduced?
- Should the patient worry?

Safety correlated with EV exposure, indicating that dose modifications are an effective way to manage AEs

Peripheral neuropathy (Grade ≥2)

- Lower EV exposure was associated with lower risk (p<0.0001) of:
 - Skin reactions[§] (Grade ≥3: 12.5%); median time to onset:
 0.6 months
 - Hyperglycaemia (Grade ≥3: 7.1%); median time to onset: 0.6 months
 - Peripheral neuropathy (Grade ≥2: 33.4%); median time to onset:
 4.7 months
- Earlier time to onset of skin reactions and hyperglycaemia (median time to onset during Cycle 1) confounded the interpretation of exposure-safety results
- Unconjugated MMAE C_{avg} was not strongly correlated with the incidence of these AEs

All data presented are from a post hoc, exploratory analysis.

Average EV exposures were divided into four quartiles: *Q1 represents EV exposures between 0–25%; †Q2: 25–50%; ‡Q3: 50–75%; †Q4: 75–100% (the highest EV exposure quartile); \$Composite term.

WEBINARS eraged exposure up to an event of interest; EV, enfortumab vedotin; MMAE, monomethyl auristatin E; O, quartile.

Responding patients resume treatment and continue to benefit following dose interruptions and reductions

Respon

PRESENTED BY: Daniel Petrylak, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

ESM

ESMO WEBINARS

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Peripheral neuropathy NB if patient has symptoms, its GRADE 2. PAUSE REDUCE DOSE

Risk factors- older, diabetes, spinal disease. Other anti cancer treatment.

Usually sensory- direct questions, difficulty holding pen, drawing blinds etc.

Was this present but low grade before starting- check diabetic control (again!!), any subtle increase in urinary symptoms that could hint.

If second line, What chemo have they already had NB cisplatin and taxanes.

Could it be due to other causes - spinal problems.

Try amitriptyline or gabapentin.

Keep hands warm (NB pre **–existing Reynaud's may** worsen after chemotherapy).

Menthol cream 1-2%.

Proactive dose reductions and pauses..

NB, nota bene. Speaker's clinical experience.

Hyperglycaemia

Risk factors-Previous history, high BMI, use of steroids, concurrent infections, underlying fatty liver disease. Education and close monitoring, ask about symptoms NB increased urinary frequency may NOT be infection.

Grade 1 continue treatment- do you need insulin

Grade 2 hold EV until blood glucose < 250 mg/ml and resume same disease. Continue Pembro. Insulin+/- oral anti hyperglycaemics

Grade 3 hold BOTH drugs. Resume Pembro when grade 1

Hold EV.

Manage DKA as per guidelines

NB, nota bene. Speaker's clinical experience.

. .

Pre-empt problems

Make sure you treat the right patient group

- Poorly controlled diabetics
- Preexisting peripheral neuropathy
- Poor performance status

Training on the ground

• Anyone who might see the patient

٠

- The patient
- If Grade 2 or above PAUSE

21

ERDAFITINIB

THOR study with cohorts 1 (2nd–3rd line) and 2 (2nd line) treatment emergent adverse events (any grade, all causalities, >20% incidence)^{1,2}

Adapted from Siefker-Radt et al. 2024¹ and Loriot et al. 2023.²

THOR2: erdafitinib with a similar toxicity pattern in earlier stages (BCG unresponsive papillary UC)¹

BCG, bacillus Calmette-Guérin; OD, once daily; UC, urothelial carcinoma. 1. Catto JWF, et al. Ann Oncol. 2024;35(1):98–106.

Adapted from Catto et al. 2024.1

Key safety parameters

	THOR 2 (BCG failure) ¹	THOR (2 nd line) ²	THOR (post IO: 2 nd or 3 rd line) ³
TRAE	100 %	97.7%	97.0%
Grade 3-4 TRAE	31 %	43.4%	45.9%
SAE (treatment related)	12 %	13.3%	13.3%
AE leading to death (treatment related)	0 %	0 %	0.7%
Discontinuation due to TRAE	27 %	15.0%	8.1%

AE, adverse event; BCG, bacillus Calmette-Guérin; IO, immuno-oncology; SAE, serious adverse event; TRAE, treatment-related adverse event. 1. Catto JWF, et al. Ann Oncol. 2024;35(1):98–106. 2. Siefker-Radtke, AO et al. Ann Oncol. 2024;35(1):107–117. 3. Loriot, Y et al. N Engl J Med. 2023;389(21):1961–1971.

Common AEs associated with FGFR inhibition

1. Subbiah V and Verstovsek S. Cell Rep Med. 2023;4:101204.

Time to onset of selected AE

Adapted from Siefker-Radtke et al. 2023.1

AE, a dverse event; CSR, Central serous retinopathy; TEAEs, treatment-emergent adverse events. 1. Siefker-Radtke AO, et al. Eur Urol Open Sci. 2023;16:1–9.

Hyperphosphataemia is a class-effect of broad spectrum *FGFRi* and a pharmacodynamic marker¹

Adapted from Siefker-Radtke et al. 2023.¹

FGFRi, fibroblast growth factor receptorinhibitor. 1. Siefker-Radtke, AO et al. Eur Urol Open Sci. 2023;16:1–9.

Therapy management of hyperphosphataemia

Adverse reaction	Dose modification	
Erdafitinib		
Hyperphosphataemia		
Limit daily phosphate intake to 600–800 mg for all pa	tients	
Serum phosphate 5.6–6.9 mg/dL	Maintain current dose of erdafitinib.	consider phosphate
Serum phosphate 7.0–9.0 mg/dL	Withhold erdafitinib and assess serum phosphate concentration weekly. When the concentration is $<5.5 \text{ mg/dL}$ (or \leq the patient's baseline concentration), restart the same dose of erdafitinib. If the hyperphosphatemia lasted > 1 week, then erdafitinib dose may be reduced.	binder if phosphate ≥7 mg/dl: - calcium carbonate - sevelamer hydrochloride
Serum phosphate > 9.0 mg/dL	Withhold erdafitinib and assess serum phosphate concentration weekly. When the concentration is $<5.5 \text{ mg/dL}$ (or \leq the patient's baseline concentration), restart erdafitinib 1 dose level lower than the previous dosage.	
More than 10.0 mg/dL or significant alteration in baseline renal function or grade 3 hypercalcemia	Withhold erdafitinib and assess serum phosphate concentration weekly. When the concentration is $<5.5 \text{ mg/dL}$ (or \leq the patient's baseline concentration), restart erdafitinib 2 dose levels below the previous dosage.	

29

Most retinopathies, skin, and nail AEs occur early during erdafitinib treatment¹

Figures adapted from Siefker-Radtke et al. 2023.1

AEs, adverse events; CSR, central serous retinopathy. 1. Siefker-Radtke, AO et al. Eur Urol Open Sci. 2023;16:1–9.

Central serous retinopathy (CSR)¹

- Acute CSR
 - Typically self-limiting process

Recovery

- Recovery of visual acuity typically occurs within 1-4 months
- Coincides with reattachment of the neurosensory retina

Management

- Observation is the standard initial management to induce reattachment of the neurosensory retina
- Active management may be warranted if the duration is more than 4–6 months or a second episode follows a complete resolution of the first one
- Surgical interventions includes photodynamic therapy or subthreshold micropulse laser treatment

CSR management^{1,2}

Incidence	Onset	Dosing Modifications	Treatment Discontinuation
<u>CSR, n (%):</u> Any Grade: 21 (21) Grade ≥3: 3 (3)	<u>CSR, n (%):</u> Any Grade: 53 days Grade ≥3: 87 days	<u>CSR, n (%):</u> Dose reduction: 13 (13) Dose interruption: 8 (8)	<u>CSR, n (%):</u> Discontinuation: 3 (3)
<u>Non-CSR Ocular Events, n (%):</u> Any Grade: 51 (52) Grade ≥3: 5 (5)	<u>Other Eye Disorders, median onset:</u> Any Grade: 50 days Grade ≥3: 162 days	<u>Other Eye Disorderst, n (%):</u> Dose reduction: 12 (12) Dose interruption: 8 (8)	<u>Other Eye Disorders†, n (%):</u> Discontinuation: 3 (3)

*Safety population include 87 patients previously treated with chemotherapy and an additional 12 chemotherapy-naïve patients who were ineligible for cisplatin-based therapy.²

[†]Other eye disorders occurring in ≥10% of patients included dry eye, blurred vision, conjunctivitis and increased lacrimation.²

CSR management on Erdafitinib¹

Adverse reaction	Dose modification		
Central serous retinopathy (CSR)/retinal pigment epithelial detachment (RPED)			
Grade 1: asymptomatic; clinical, or diagnostic observations only	Withhold erdafitinib until resolution. Resume at 1 dose lower if CSR/RPED resolves within 4 weeks. Consider re-escalating dose if no CSR/RPED recurrence for a month. If CSR/RPED remains stable for 2 consecutive eye exams but has not resolved, then resume erdafitinib at the next lower dose level.		
Grade 2: visual acuity 20/40 or better or ≤3 lines of decreased vision from baseline	Withhold erdafitinib until resolution. May resume at 1 dose lower if CSR/RPED resolves within 4 weeks.		
Grade 3: visual acuity worse than 20/40 or >3 lines of decreased vision from baseline	Withhold erdafitinib until resolution. May resume at 2 dose lower if CSR/RPED resolves within 4 weeks. Consider permanent discontinuation if CSR/RPED recurs.		
Grade 4: visual acuity 20/200 or worse in the affected eye	Permanently discontinue erdafitinib.		
Other adverse reactions			
Grade 3	Withhold erdafitinib until resolution to grade 1 or baseline. Then, erdafitinib, may be resumed at 1 dose level lower.		
Grade 4	Permanently discontinue erdafitinib.		
CSR, central serous retinopathy: RPED, retinal pigment epithelial detachment. . Subbiah V and Verstovsek S. Cell Rep Med. 2023;4(10):101204.			

ESMO WEBINARS

ESMO WEBINARS

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

