

Precision Oncology in Lung Cancer – Diagnostics

ESMO DEEP DIVE WEBINAR SERIES: LUNG CANCER

Thomas John, Chair

Peter MacCallum Cancer Centre, University of Melbourne, Australia

5 February 2025	
5 min	Welcome and introduction
	Tom John
25 min	Precision through genomics and beyond (multi-omics)
	Celine Mascaux
25 min	Harnessing liquid biopsy for diagnosis, monitoring
	Christian Rolfo
25 min	Beyond Xray vision – novel imaging technologies and radiomics
	Raquel Lopez
15 min	QnA and Discussion
	All speakers

Thomas John Chair Peter MacCallum Cancer Centre, University of Melbourne

Celine Mascaux

Speaker Strasbourg University Hospital

Christian Rolfo Speaker The Ohio State University Wexner Medical Center

Raquel Perez Lopez Speaker Vall d'Hebron Institute of

Oncology

Learning objectives

- To acquire a deeper understanding of the clinical course of lung cancer.
- To understand biological hypotheses on classification and risk stratification, ongoing/required research in therapeutics and knowledge of use of omics technologies for biomarker-enabled precision medicine for lung cancer.
- To develop skills and abilities for critical analysis, interpretation of research data and therapeutic strategies.
- To become better equipped for informed, innovative thinking and engagement in ongoing or new research projects.

Precision Oncology in Lung cancer – Diagnostics (genomics, transcriptomics (SCLC), plasma, radiomics)

Celine Mascaux

04 février 2025

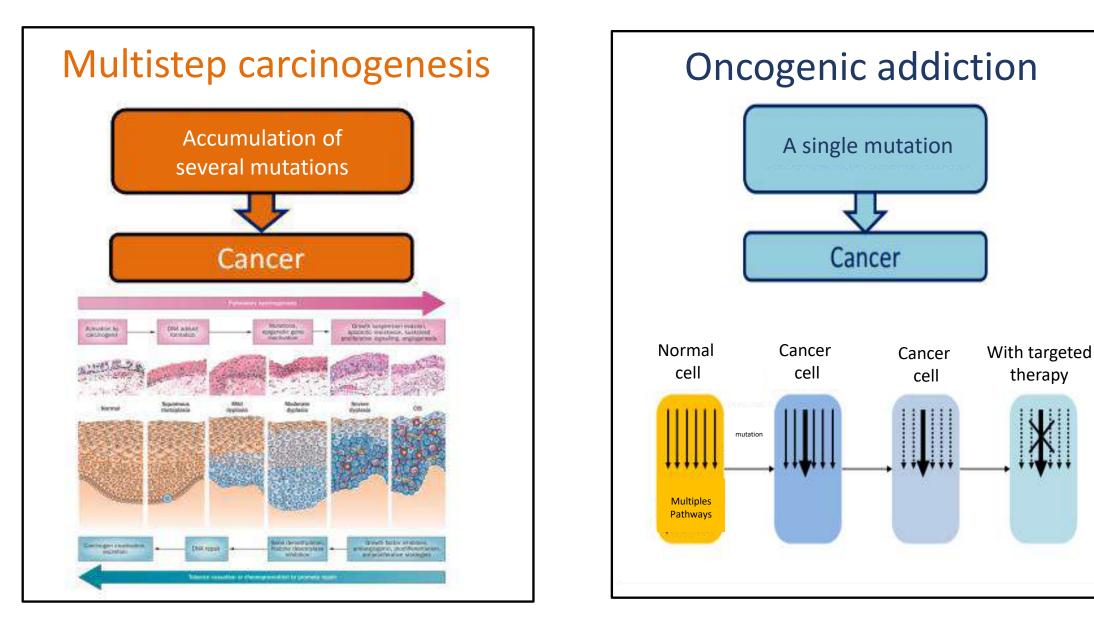
Precision medecine through genomics and beyond (multi-omics)

Celine Mascaux

04 février 2025

WHY IN WHOM do we analyse tumours for molecular abnormalities ? HOW

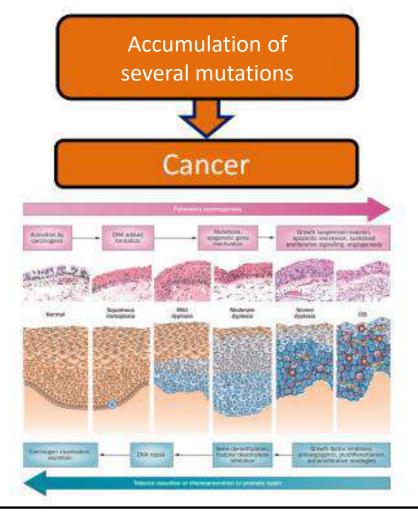
BOOD SCIENCE BETTER MEDICPH

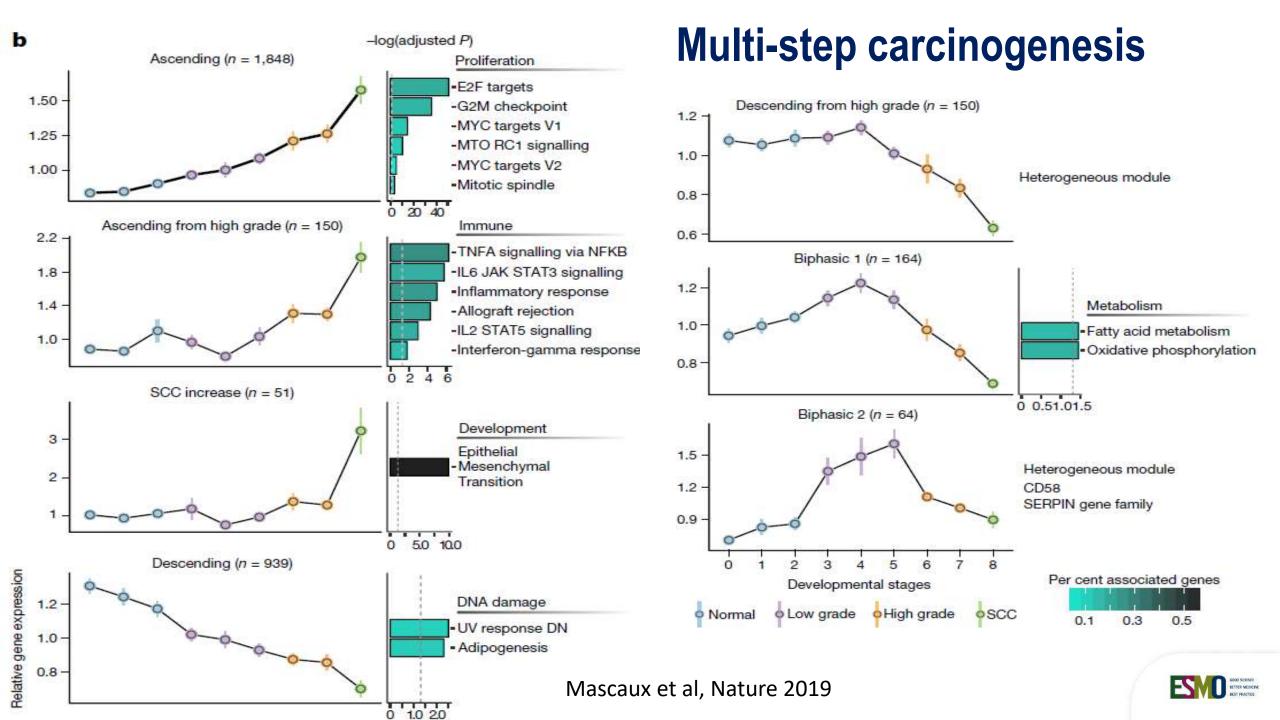


WHY do we analyse tumours for molecular abnormalities ?

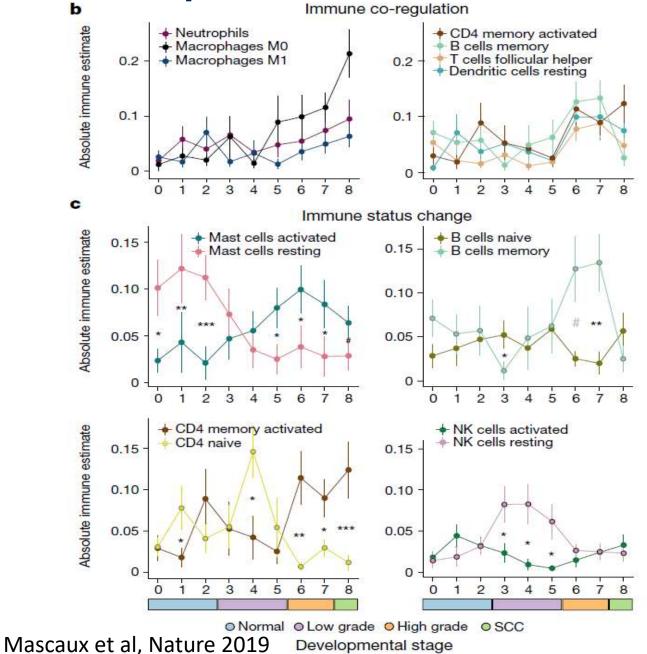
BOOD SCIENCE BETTER MEDICINE

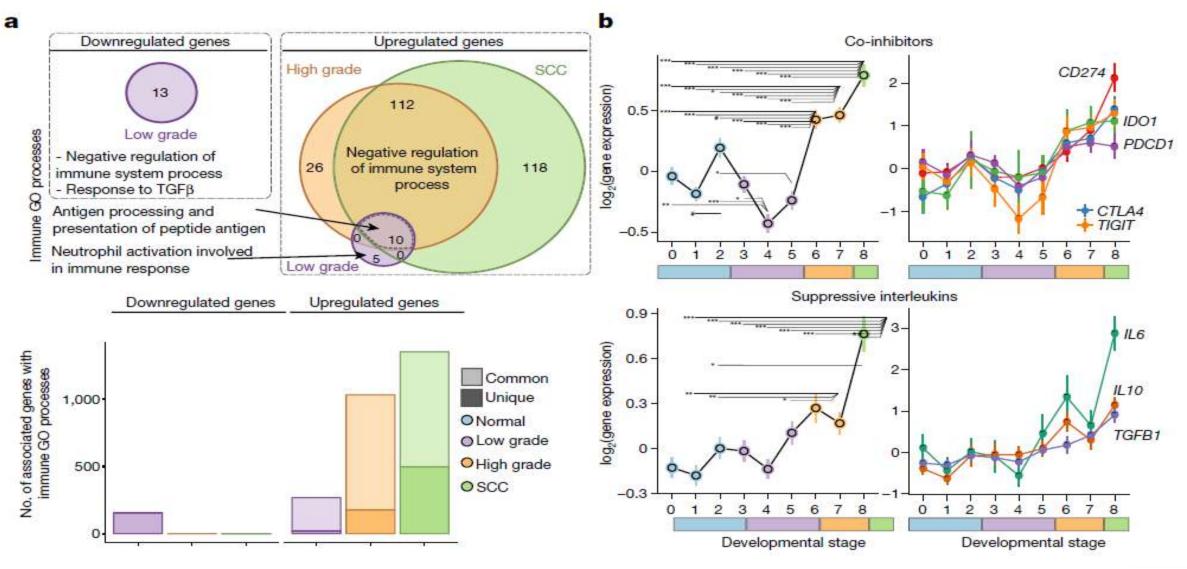
Two models of carcinogenesis




therapy

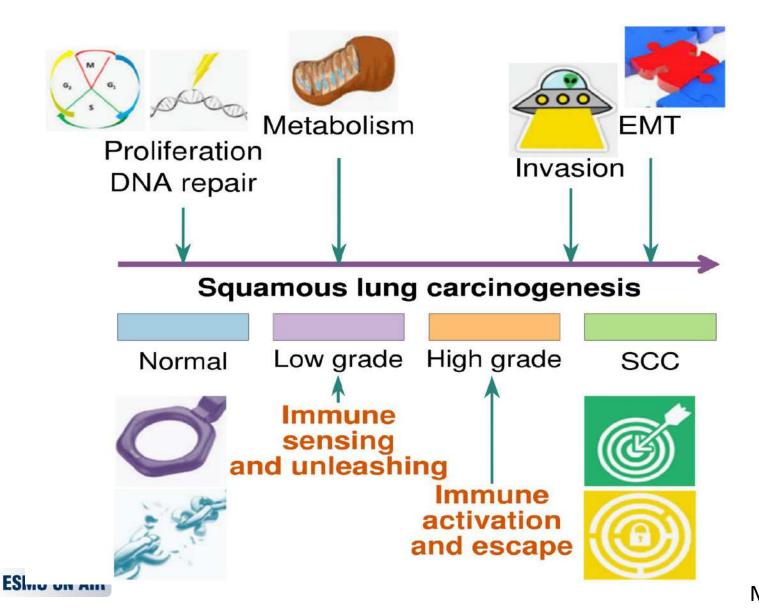
Two models of carcinogenesis




Active immune response

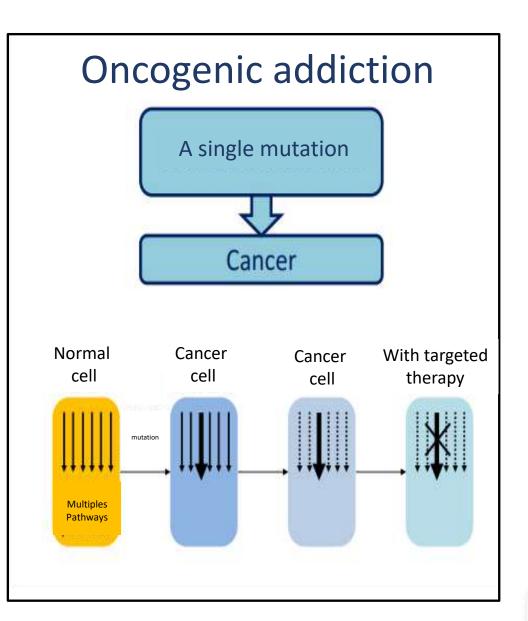
ESVO DESTRUCTIVE

Early inhibition of immune response



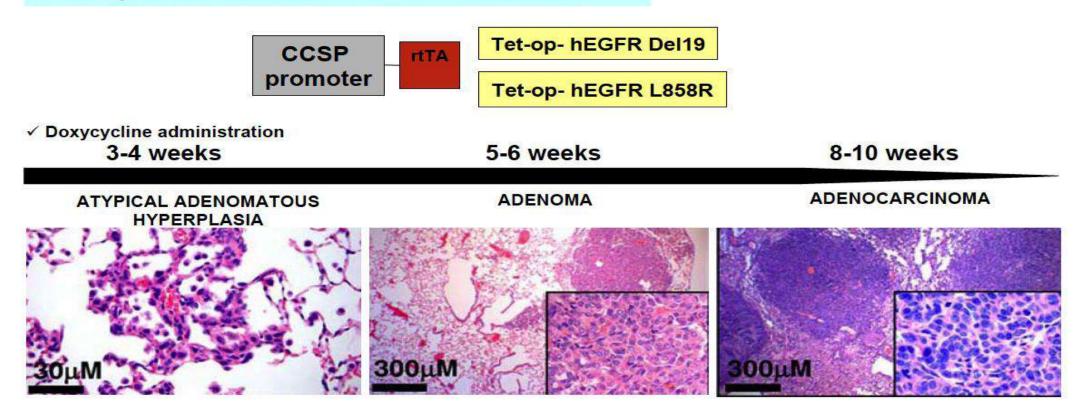
ESMO ON AIR

Mascaux et al, Nature 2019



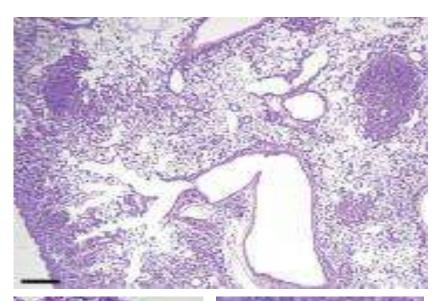
Chronology of molecular pathway of lung carcinogenesis

Two models of carcinogenesis



Genetically engineered models of lung cancer

Cell specific inducible hEGFR mutant



- 100% developed adenocarcinoma with BAC features after 8 or more weeks (SPC+)
- Expression of the hEGFR mutants is essential for tumor maintenance (After 3 weeks of doxycycline withdrawal a complete regression was observed)
- •Treatment with TKis (erlotinib or HKI-272) or long term anti-hEGFR antibody (cetuximab) led to tumor regression.

Ji et al. Cancer Cell 2006 9(6):485-95

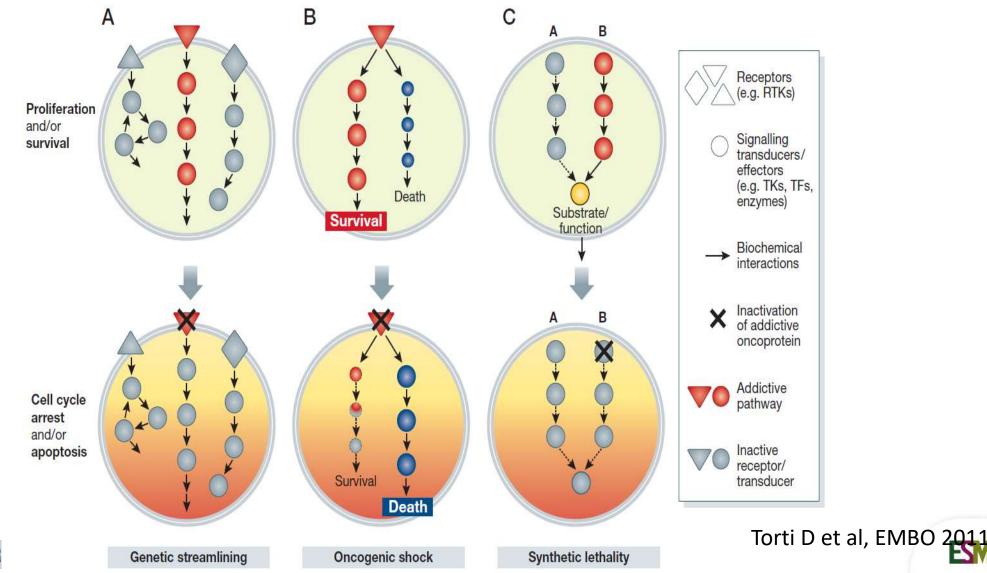

Mouse Lung Adenocarcinomas Induced by Sensitive EGFR Mutations Respond to Downregulation of the Receptors or Erlotinib

Histopathology

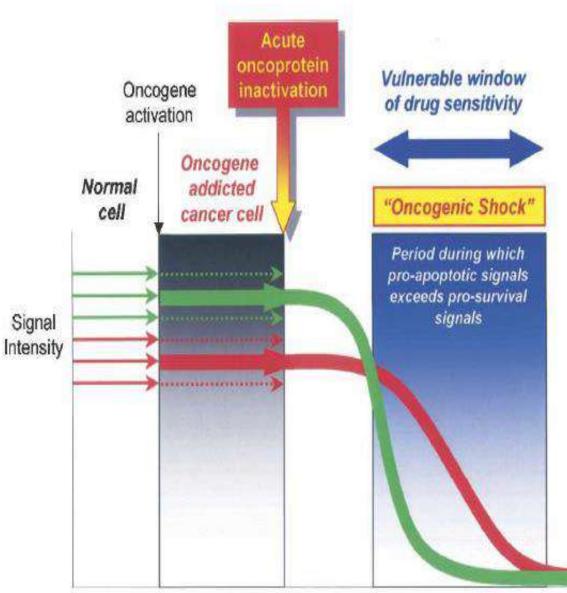
Tumor Response (MRI)

7 weeks ON dox

9 weeks on dox

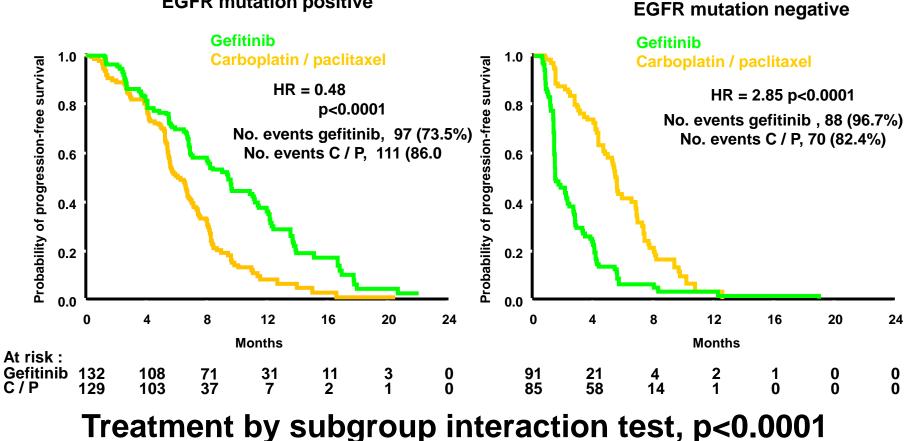

1 week OFF dox

Ji et al.:Genes and Dev 2006:20:1496-510


Models of oncogenic addiction

BETTER MEDICIN

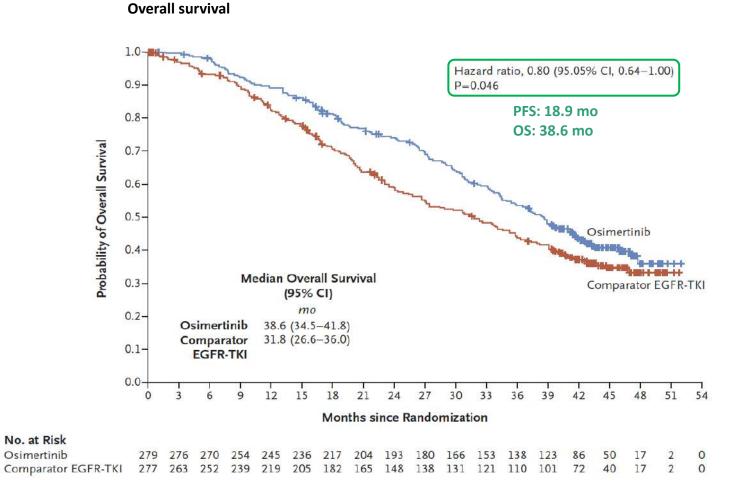
The oncogenic shock



Time

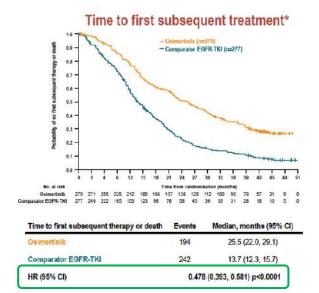
Sharma SV et al, Genes and dev 2007

IPASS: Progression-Free Survival in EGFR Mutation **Positive and Negative Patients**

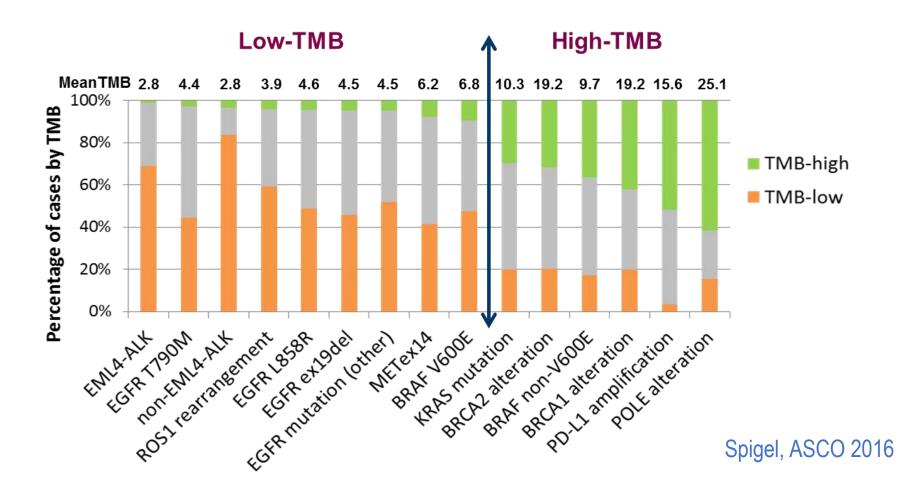


EGFR mutation positive

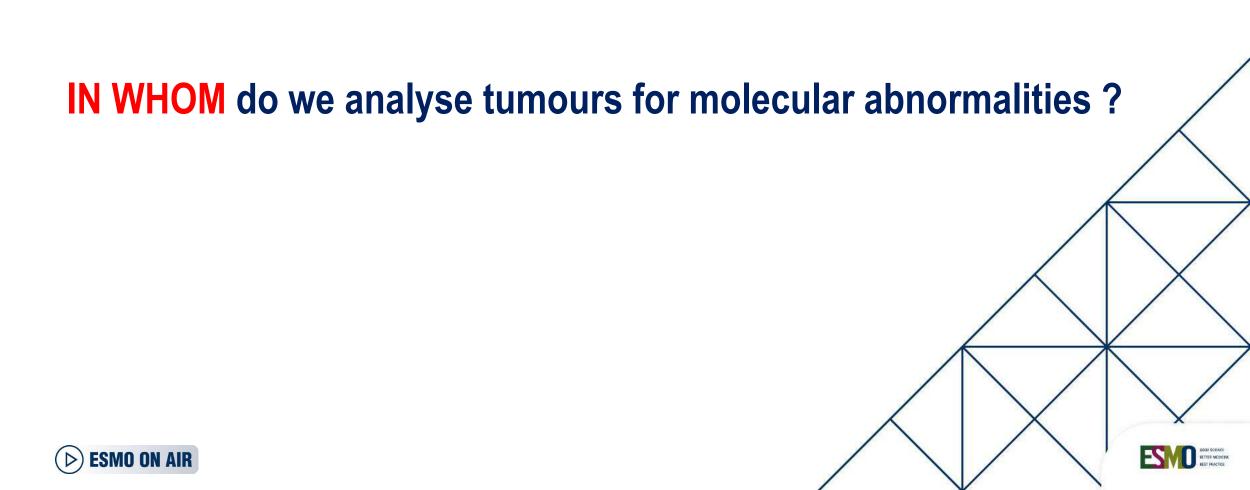
Fukuoka et al. Proc ASCO, 2009


FLAURA Phase III 1st line treatment, osimertinib vs gefitinib/erlotinib

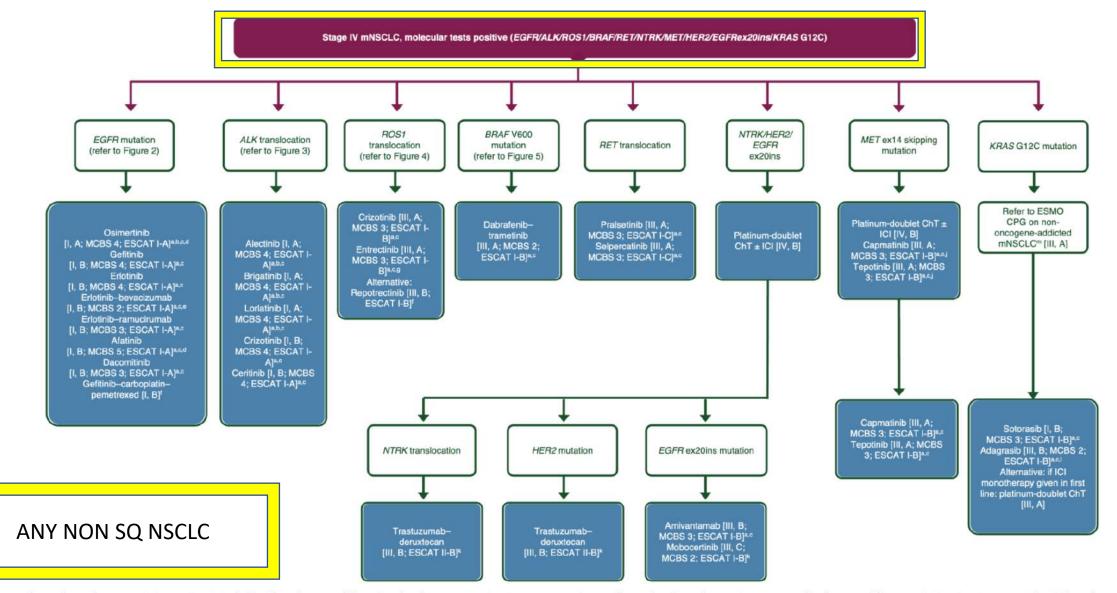
Advanced NSCLC, common EGFR mutation, double blind, amendment for osimertinib cross-over


Table 1. Overall Survival and Continuation of First-Line Trial Drug.*

Variable	Osimertinib (N=279)	Comparator EGFR-TKI (N = 277)
Patients continuing to receive first- line trial drug — no. (%)		
At 12 mo	194 (70)	131 (47)
At 24 mo	118 (42)	45 (16)
At 36 mo	78 (28)	26 (9)

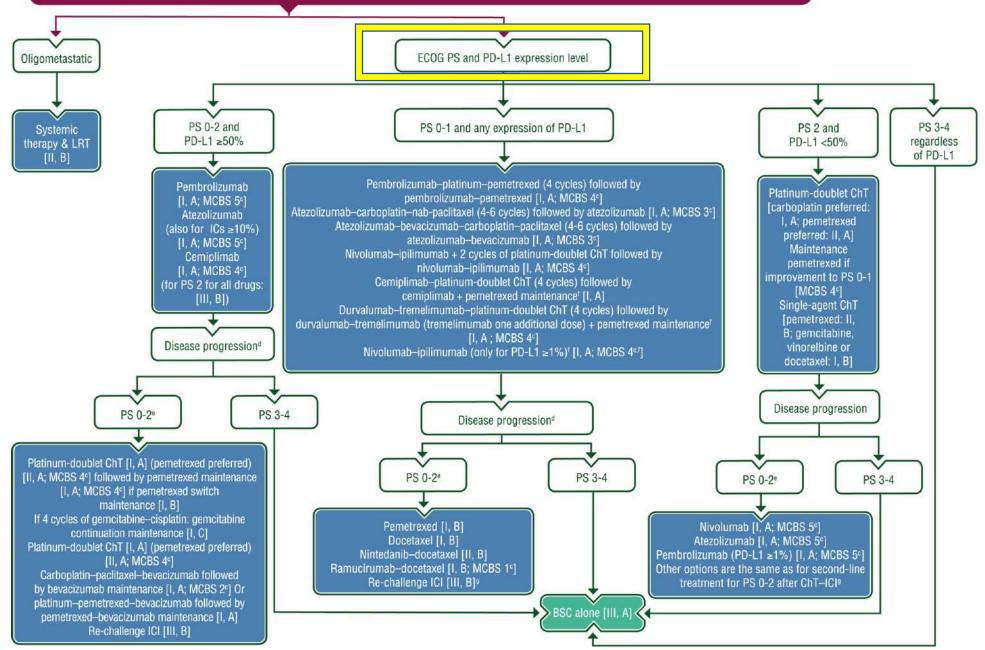

Hendriks LE, Ann Oncol 2022, Epub Dec; Ramalingam S, N Engl J Med 2020, 382:41

TMB high versus low and oncogenic addiction

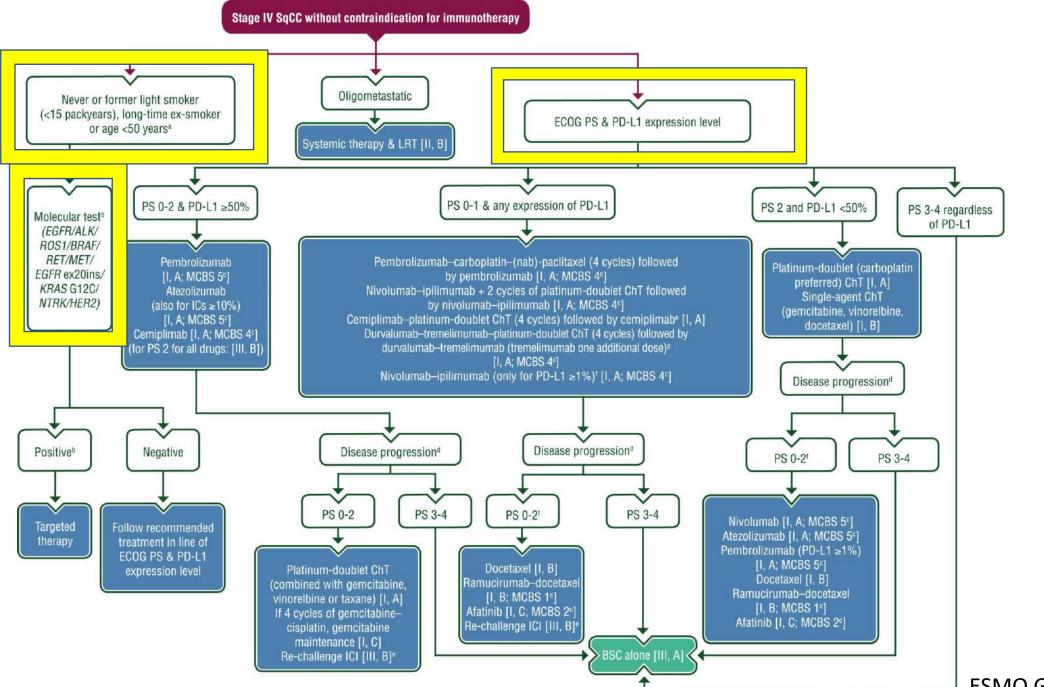

ADVANCED STAGES NSCLC

BOOD SCIENCE BETTER MEDICINE BEST PRACTICE

FC

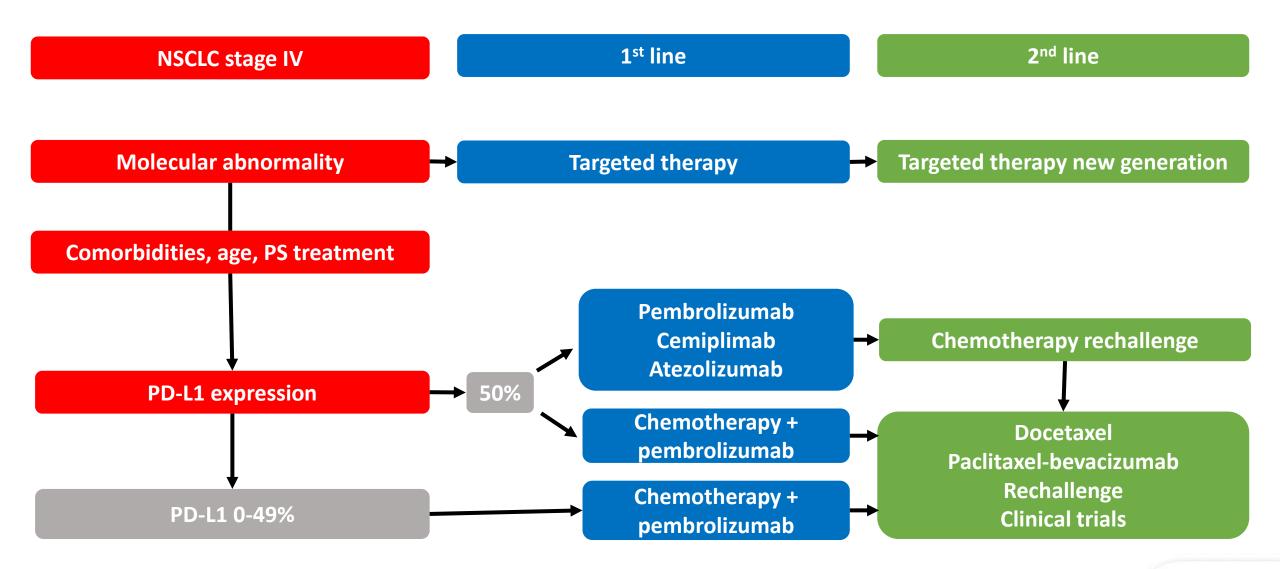


Targeted Therapies in Advanced NSCLC: ESMO guidelines



ChT = chemotherapy; ESCAT = ESMO Scale for Clinical Actionability of molecular Targets; ESMO = European Society for Medical Oncology; ICI = immune-checkpoint inhibitor; MCBS = ESMO-Magnitude of Clinical Benefit Scale. Reproduced with permission from Hendriks LE, et al. Ann Oncol. 2023;34:339-357.

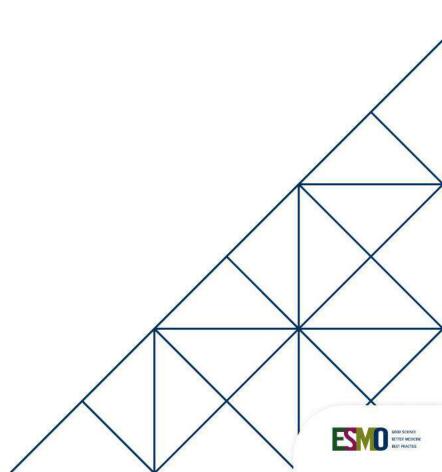
Stage IV NSgNSCC, molecular tests negative (EGFR/ALK/ROS1/BRAF/RET/MET/EGFR ex20ins/KRAS G12C/NTRK/HER2)".b without contraindication for immunotherapy

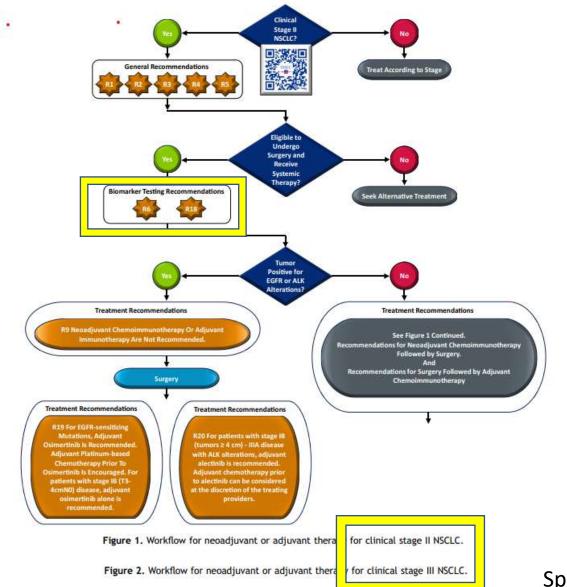


ESMO Guidelines 2024

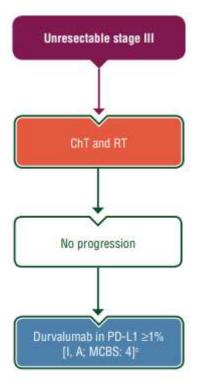
ESMO Guidelines 2024

ALGORITHM IN STAGES IV NSCLC





EARLY STAGES NSCLC


Neoadjuvant and Adjuvant Treatments for Early Stage Resectable NSCLC: Consensus Recommendations From the International Association for the Study of Lung Cancer

	Expert Panel Agreement, %	Open Comment Agreement, %
For patients being considered for neoadjuvant or adjuvant systemic therapy, at a minimum, determination of EGFF and ALK alteration status is required. Tumor proportion score measurement for determination of PD-L1 status should also be considered.	2	93
For patients with TKI-sensitizing EGFR or ALK alterations, neoadjuvant chemoimmunotherapy or adjuvant immunotherapy is not recommended.	95	89
In the light of ongoing trials in populations with specific driv alterations and with extrapolation of the limited effica- of PD-1 and PD-L1 inhibitors in patients with driver alterations, in addition to assessing <i>EGFR</i> and <i>ALK</i> alteration status, biomarker testing for other oncogenie drivers is highly encouraged in patients with early stage disease.	cy :	91
For patients with stage II or IIIA disease with EGFR-sensitiz mutations, adjuvant osimertinib is recommended. Adjuvant platinum-based chemotherapy before osimertii is encouraged. For patients with stage IB (T3-4cmN0) disease, adjuvant osimertinib alone is recommended.	an ka munduken Ak	92
For patients with stages IB (tumors ≥ 4 cm) to IIIA disease with ALK alterations, adjuvant alectinib is recommende Adjuvant chemotherapy before alectinib can be consider at the discretion of the treating providers.	ed.	ND

Spicer et al, JTO 2024

Unresectable stage III

Unresectable locally advanced NSCLC

The phase III PACIFIC trial randomised (2 : 1) 713 patients with unresectable, locallyadvanced NSCLC without <u>disease progression</u> within the first 42 days after concurrent <u>chemoradiotherapy</u>, to consolidative <u>durvalumab</u> for 1 year or placebo.⁸ After a median follow-up of 34.2 months, the median OS for durvalumab was reached (47.5 months versus 29.1 months for placebo, HR 0.72, 95% CI 0.59-0.89), and the estimated 5-year OS rates were 42.9% versus 33.4% for durvalumab versus placebo, respectively. The median PFS was 16.9 months for durvalumab and 5.6 months for placebo (HR 0.55, 95% CI 0.45-0.68) with a 5-year PFS rate of 33.1% versus 19.0%, respectively.⁸

A *post hoc* exploratory analysis of the mature survival data requested by licensing European authorities observed that the benefit with durvalumab was not evident in patients with PD-L1 expression <1%. The significance of this observation is disputed.⁹

In France

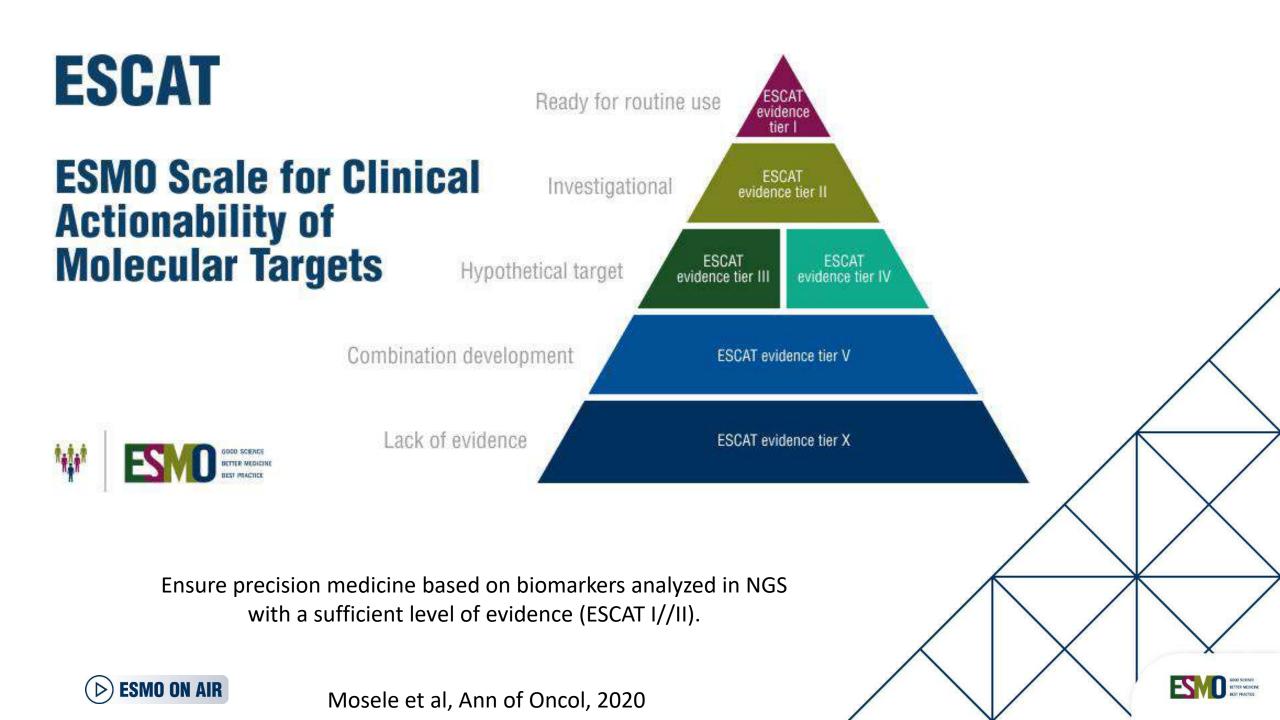
CBNPC* Stades métastatiques Stades Stades Progression après précoces(IB à localement (IV) thérapie ciblée III) tumeurs avancés(III) réséquées non réségués Délai de rendu du résultat: Délai de rendu du résultat: idéalement 7 jours, au maximum 14 jours ≤21 jours Biomarqueurs Panel(s) mutations EGFR Statut PD-L1¹ à rechercher d'altérations **Mutations** EGFR Fusions ALK et Panel(s) (L858R et del19) (prescription Statut PD-L1 et mutations moléculaires (L858R et del19)2 ROST 3 d'altérations par clinicien ou EGFR (exons et statut PD-L1¹ expliquantune moléculaires anatomo-18 à 21) et ALK résistance⁵ pathologiste) Décision Immunothérapie seule ou en Thérapie ciblée en Thérapie ciblée en Immunothérapie Osimertiniben thérapeutique combinaison (PD-L1⁺ et absence fonction des fonction des après chimioradioadjuvant (EGFR+) sousla altérations de mutation addictive) altérations ou autre thérapie (contrôle responsabilité ou thérapie ciblée en fonction identifiées identifiées tumoral, PD-L1⁺ et traitement de l'équipe des altérations identifiées ou autre traitement ou autre traitement approprié⁶ EGFR')6 clinique⁶ ou autre traitement approprié approprié⁶ approprié⁶ Si urgence et/ou impossibilité IHC, validé si besoin par Test(s) ciblé(s) IHC NGS ADN et/ou ARN de tenir les délais moléculaires technique moléculaire

Arbre décisionnel : biomarqueurs nécessaires au traitement des patients atteints de conpc

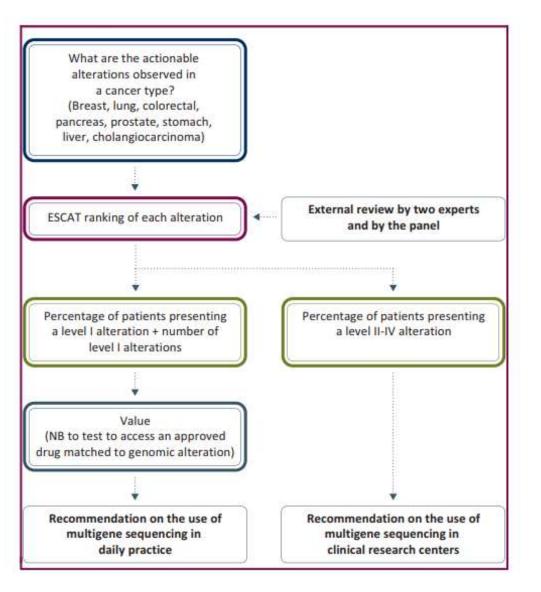
REPUBLICUE IRANCALE

PATIENTS ATTEINTS D'UN CANCER BRONCHIQUE NON À PETITES

CELLULES


Indications des tests moléculaires en vue de la prescription

de traitements de précision


CINSTITUT

Methods to develop recommendation about NGS in daily practice

Mosele et al, Ann of Oncol, 2020

Which biomarkers do we test in first line for advanced NSCLC

Gene	Alteration	Prevalence	ESCAT	References
EGFR	Common mutations (Del19, L858R)	15% (50%—60% Asia	n) IA	Midha A, et al. Am J Cancer Res. 2015 ²⁶
	Acquired T790M exon 20	60% of EGFR mutant	IA	Mok T, et al. J Clin Oncol. 2018 ²⁷
	Uncommon EGFR mutations (G719X in exon	NSCLC	IB	Soria J-C, et al. N Engl J Med. 2018 ²⁸
	18 <i>, L861Q</i> in exon 21 <i>, S768I</i> in exon 20)	10%	IIB	Ramalingam S, et al. N Engl J Med. 2020 ²⁹
	Exon 20 insertions	2%		Mok T, et al. N Engl J Med. 2017 ³⁰
				Yang JC-H, et al. <i>Lancet Oncol</i> . 2015 ³¹
				Cho J, et al. J Thorac Oncol. 2018 ³²
				Cardona A, et al. Lung Cancer. 2018 ³³
				Heymach J, et al. J Thorac Oncol. 2018 ³⁴
ALK	Fusions (mutations as mechanism of resistance)	5%	IA	Solomon B, et al. J Clin Oncol. 2018 ³⁵
				Soria J-C, et al. <i>Lancet</i> . 2017 ³⁶
				Peters S, et al. <i>N Engl J Med</i> . 2017 ³⁷ Zhou C, et al. <i>Ann Oncol.</i> 2018 ³⁸
				Camidge D, et al. N Engl J Med. 2018 ³⁹
MET	Mutations ex 14 skipping	3%	IB	Tong J, et al. Clin Cancer Res. 2018
IVIET	Wittations ex 14 skipping	5%	ID	Drilon A, et al. Nat Med. 2020 ⁴¹
	Focal amplifications (acquired resistance	3%	IIB	Camidge D, et al. J Clin Oncol. 2018 ⁵²
	on EGFR TKI in <i>EGFR</i> -mutant tumours)	570	110	
BRAF ^{V600E}	Mutations	2%	IB	Planchard D, et al. Lancet Oncol. 2016 ⁴²
2.0.0		270		Planchard D, et al. <i>Lancet Oncol.</i> 2017 ⁴³
				Planchard D, et al. J Clin Oncol. 2017 ⁴⁴
ROS1	Fusions (mutations as mechanism	1%—2%	IB	Shaw A, et al. N Engl J Med. 2014 ⁴⁵
	of resistance)			Shaw A, et al. Ann Oncol. 2019 ⁴⁶
				Drilon A, et al. <i>Lancet Oncol.</i> 2020 ⁴⁷
NTRK	Fusions	0.23% 3%	IC	Drilon A, et al. N Engl J Med. 2018 ⁴⁸
				Hong D, et al. <i>Lancet Oncol.</i> 2020 ⁴⁹
				Doebele RC, et al. Lancet Oncol. 2020 ⁵⁰
RET	Fusions	1%—2%	IC	Drilon A, et. J Thorac Oncol. 2019 ⁵¹
KRAS ^{G12C}	Mutations	12%	IIB	Barlesi F, et al. Lancet. 2016 ⁵³
				Fakih M, et al. J Clin Oncol. 2019 ⁵⁴
ERBB2	Hotspot mutations	2% — 5%	IIB	Hyman D, et al. Nature. 2018 ⁵⁵
	Amplifications			Wang Y, et al. Ann Oncol. 2018 ⁵⁶
BBCA 4/2		4.20/		Tsurutani J, et al. J Thorac Oncol. 2018 ⁵⁷
BRCA 1/2	Mutations	1.2%	IIIA	Balasubramaniam S, et al. <i>Clin Cancer Res.</i> 2017 ⁶³
РІКЗСА	Hotspot mutations	1.2%—7%	IIIA	Cancer Genome Atlas Research Network. <i>Nature</i> . 2014 ⁶
110.04		4 70/		Vansteenkiste J, et al. J Thorac Oncol. 2015 ⁶²
NRG1	Fusions	1.7%	IIIB	Duruisseaux M, et al. J Clin Oncol. 2019 ⁵⁹

Which biomarkers do we test in first line for advanced NSCLC

Table 3B. List of genomic alterations level I/II/III according to ESCAT in advanced squamous NSCLC					
Gene	Alteration	Prevalence	ESCAT	References	
NTRK	Fusions	0.23%—3%	IC	Drilon A, et al. <i>N Engl J Med.</i> 2018 ⁴⁸ Hong D, et al. <i>Lancet Oncol.</i> 2020 ⁴⁹ Doebele RC, et al. <i>Lancet Oncol.</i> 2020 ⁵⁰	
РІКЗСА	Hotspot mutations	16%	IIIA	Cancer Genome Atlas Research Network, <i>Nature</i> . 2012 ⁶¹ Vansteenkiste J, et al. <i>J Thorac Oncol</i> . 2015 ⁶²	
BRCA 1/2	Mutations	1.2%	IIIA	Balasubramaniam S, et al. <i>Clin Cancer Res.</i> 2017 ⁶³	

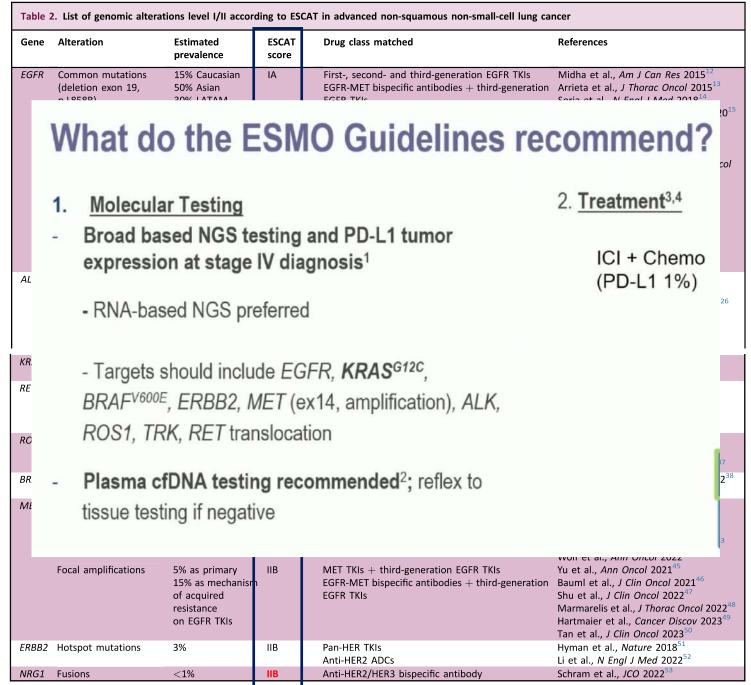
ESCAT. European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of molecular Targets.

SPECIAL ARTICLE

Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: a report from the ESMO Precision Medicine Working Group

M. F. Mosele^{1,2}, C. B. Westphalen³, A. Stenzinger⁴, F. Barlesi^{1,2,5}, A. Bayle^{5,6,7,8}, I. Bièche⁹, J. Bonastre^{7,8}, E. Castro¹⁰, R. Dienstmann^{11,12,13}, A. Krämer^{14,15}, A. M. Czarnecka^{16,17}, F. Meric-Bernstam¹⁸, S. Michiels^{7,8}, R. Miller^{19,20}, N. Normanno²¹, J. Reis-Filho^{22†}, J. Remon², M. Robson²³, E. Rouleau²⁴, A. Scarpa²⁵, C. Serrano¹¹, J. Mateo¹¹ & F. André^{1,2,5*}

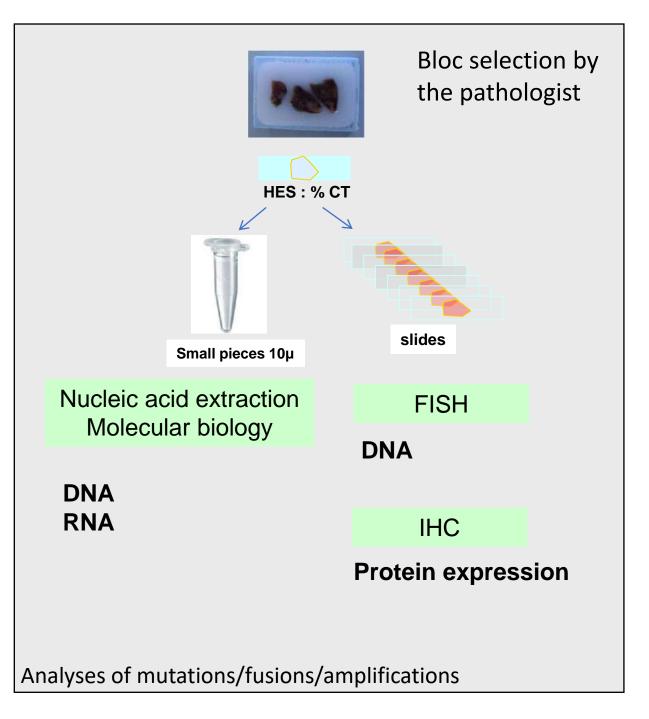
Summary of recommendations

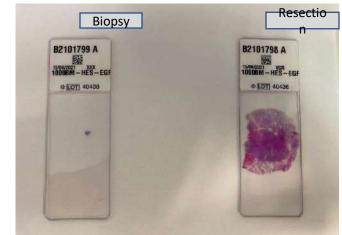

No changes have been made to the indication of carrying out tumour NGS in patients with advanced non-squamous NSCLC in daily practice, as the working group has already recommended tumour NGS in these patients. However, with the inclusion of new genomic alterations categorised as ESCAT level I, it is crucial to carefully consider the optimal approach for tumour NGS implementation in the clinical management of patients with advanced non-squamous NSCLC.

Gene	Alteration	Estimated prevalence	ESCAT score	Drug class matched	References
EGFR	Common mutations (deletion exon 19, p.L858R)	15% Caucasian 50% Asian 30% LATAM	IA	First-, second- and third-generation EGFR TKIs EGFR-MET bispecific antibodies $+$ third-generation EGFR TKIs EGFR-MET bispecific antibodies $+$ chemotherapy \pm EGFR TKIs (after PD on third-generation EGFR TKIs)	Midha et al., Am J Can Res 2015 ¹² Arrieta et al., J Thorac Oncol 2015 ¹³ Soria et al., N Engl J Med 2018 ¹⁴ Ramalingam et al., N Engl J Med 2020 ¹ Cho et al., Ann Oncol 2023 ¹⁶ Passaro et al., Ann Oncol 2024 ¹⁷
	Acquired p.T790M mutation in exon 20	60% after first- or second-generation EGFR TKIs	IA	Third-generation EGFR TKIs	Mok et al., <i>N Engl J Med</i> 2017 ¹⁸ Papadimitrakopoulou et al., <i>Ann Oncol</i> 2020 ¹⁹
	Exon 20 insertions	2%	IA	EGFR-MET bispecific antibodies or TKIs	Park et al., <i>J Clin Oncol</i> 2021 ²⁰ Zhou et al., <i>N Engl J Med</i> 2023 ²¹
	Uncommon mutations (p.G719 variants in exon 18, p.L861Q in exon 21, p.S768I in exon 20)	10%	ΙB	Second- and third-generation EGFR TKIs	Cho et al., <i>J Clin Oncol</i> 2020 ²² Yang et al., <i>Front Oncol</i> 2022 ²³
ALK	Fusions	5%	IA	ALK TKIS	Mok et al., Ann Oncol 2020 ²⁴ Shaw et al., N Engl J Med 2020 ²⁵ Camidge et al., J Thorac Oncol 2021 ²⁶ Horn et al., JAMA Oncol 2021 ²⁷ Solomon et al., Lancet Respir Med 2023 ²⁸
KRAS	Mutations (p. G12C)	12%	IA	KRAS ^{G12C} TKIs	Jänne et al., <i>N Engl J Med</i> 2022 ²⁹ de Langen et al., <i>Lancet</i> 2023 ³⁰
RET	Fusions	1%-2%	IA	RET TKIS	Subbiah et al., <i>Clin Can Res</i> 2021 ³¹ Griesinger et al., <i>Ann Oncol</i> 2022 ³² Drilon et al., <i>J Clin Oncol</i> 2023 ³³ Zhou et al., <i>N Engl J Med</i> 2023 ³⁴
ROS1	Fusions	1%-2%	IB	ROS1 TKIs	Shaw et al., Ann Oncol 2019 ³⁵ Shaw et al., Lancet Oncol 2019 ³⁶ Drilon et al., JTO Clin Res Rep 2022 ³⁷
BRAF	Mutations (p. V600E)	2%	IB	BRAF TKIS + MEK TKIS	Planchard et al., <i>J Thorac Oncol</i> 2022 ³ Riely et al., <i>J Clin Oncol</i> 2023 ³⁹
MET	Mutations exon 14 skipping	3%	IB	MET TKIS	Drilon et al., <i>Nat Med</i> 2020 ⁴⁰ Wolf et al., <i>J Clin Oncol</i> 2021 ⁴¹ Lu et al., <i>Lancet Respir</i> 2021 ⁴² Thomas et al., <i>J Thorac Oncol</i> 2022 ⁴³ Wolf et al., <i>Ann Oncol</i> 2022 ⁴⁴
	Focal amplifications	5% as primary 15% as mechanisr of acquired resistance on EGFR TKIs	IIB	MET TKIs + third-generation EGFR TKIs EGFR-MET bispecific antibodies + third-generation EGFR TKIs	Yu et al., Ann Oncol 2021 ⁴⁵ Bauml et al., J Clin Oncol 2021 ⁴⁶ Shu et al., J Clin Oncol 2022 ⁴⁷ Marmarelis et al., J Thorac Oncol 2022 ⁴⁵ Hartmaier et al., Cancer Discov 2023 ⁴⁵ Tan et al., J Clin Oncol 2023 ⁵⁰
ERBB2	Hotspot mutations	3%	IIB	Pan-HER TKIs Anti-HER2 ADCs	Hyman et al., <i>Nature</i> 2018 ⁵¹ Li et al., <i>N Engl J Med</i> 2022 ⁵²
NRG1	Fusions	<1%	IIB	Anti-HER2/HER3 bispecific antibody	Schram et al., <i>JCO</i> 2022 ⁵³

Mosele MF, Ann Oncol 2024

ADC, antibody—drug conjugates; EGFR, epidermal growth factor receptor; ESCAT, ESMO Scale for Clinical Actionability of molecular Targets; HER, human epidermal growth factor receptor; LATAM, Latin America; PD, progressive disease; TKIs, tyrosine kinase inhibitors.

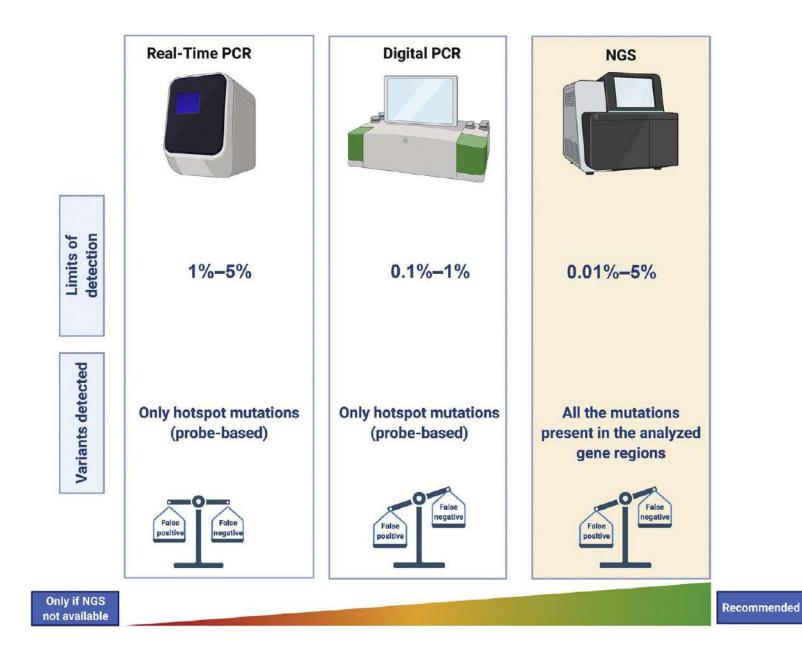

ESCAT I/II


ADC, antibody—drug conjugates; EGFR, epidermal growth factor receptor; ESCAT, ESMO Scale for Clinical Actionability of molecular Targets; HER, human epidermal growth factor receptor; LATAM, Latin America; PD, progressive disease; TKIs, tyrosine kinase inhibitors.

Mosele MF, Ann Oncol 2024

ESCAT I/II

Quality of the tissue (fixation, treatment, time since sampling) Quantity of available material Tumour cellularity (%)

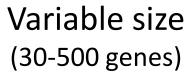


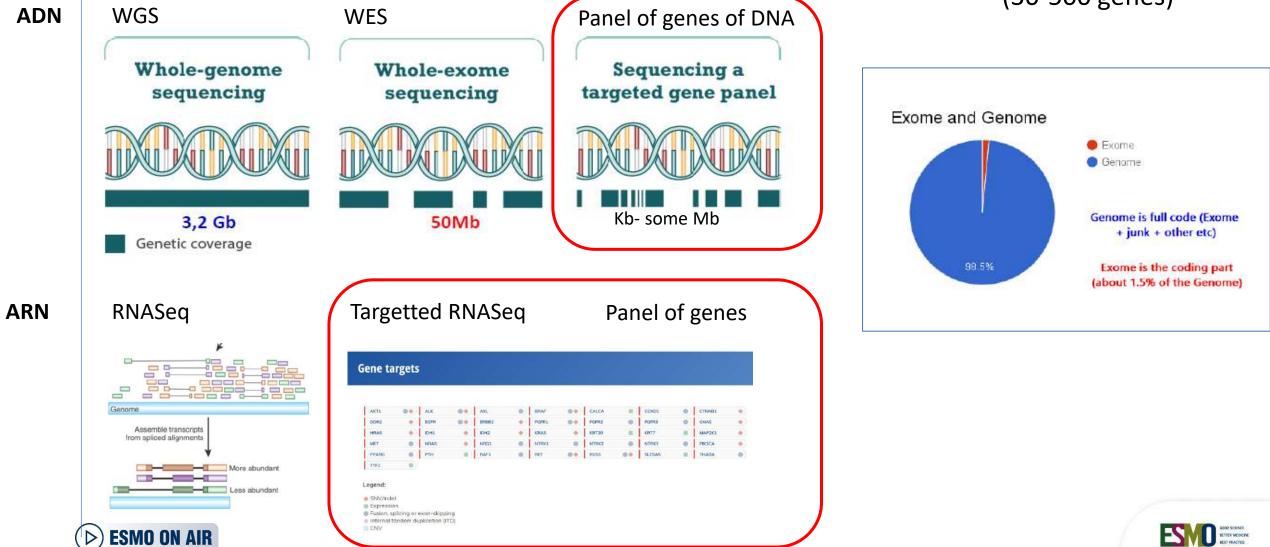
With sequential approach of testing Risk of lack of tissue

For small sample, prefer high throughput techniques (NGS +++)

Biomarkers, molecular targets and methods for testing according to ESCAT scores

Biomarker or genomic alteration	Method of detection	Drug match	ESCAT score ^{a,b}	ROS1 rearrangements ⁷⁸⁻⁸¹	IHC (only screening)	ROS1 TKI	I-B	KRAS G12C mutations ⁸⁹	NGS	KRAS G12C inhibitor	I-B
EGFR mutations (ex19 deletion or exon 21 L858R) ⁵⁵⁻⁶⁷	Sanger sequencing or NGS	EGFR TKI	I-A	BRAF V600 mutations ⁸²	RNA-based NGS Sanger sequencing or NGS	BRAF + MEK TKI	I-B	NTRK rearrangements ^{90, 91}	IHC for screening RNA-based NGS	NTRK inhibitors	I-C
EGFR T790M resistance mutation ⁶⁸	Sanger sequencing or NGS	EGFR TKI	I-A	<i>RET</i> rearrangements ^{83, 84}	FISH RNA-based NGS	RET TKI	I-C	NRG1 fusions ⁹²	RNA-based NGS	HER inhibitors	III-A
Non-exon 19 deletion/exon 21 L858R sensitising <i>EGFR</i> mutations ^{69, 70}	Sanger sequencing or NGS	EGFR TKI	I-B	<i>MET</i> exon 14 skipping mutations ^{85, 86}	(preferably) NGS (RNA-based NGS might detect more cases compared with DNA-	МЕТ ТКІ	I-B	_			
EGFR exon 20 insertion mutations ^{71.} ⁷²	or NGS	EGFR TKI EGFR MET Bispecific antibody	I-B	MET amplification ⁸⁵	based NGS) IHC ISH	МЕТ ТКІ	II-B	_			
ALK rearrangements ^{70,} 73-77	IHC FISH RNA-based NGS	ALK TKI	I-A	HER2 mutations ^{87, 88}	NGS	Antibody–drug conjugate	ІІ-В	_			
(Þ) ES	MO ON AIR	1	1]							E	


REVIEW


Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group

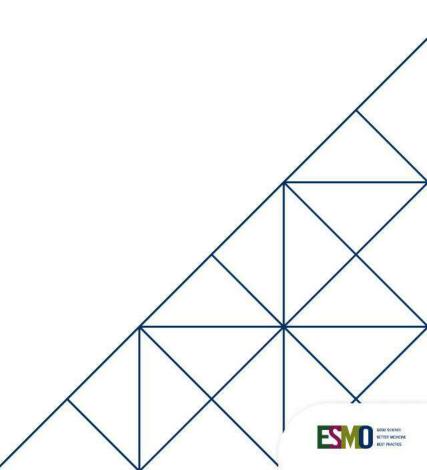
F. Mosele¹, J. Remon², J. Mateo³, C. B. Westphalen⁴, F. Barlesi¹, M. P. Lolkema⁵, N. Normanno⁶, A. Scarpa⁷, M. Robson⁸, F. Meric-Bernstam⁹, N. Wagle¹⁰, A. Stenzinger¹¹, J. Bonastre^{12,13}, A. Bayle^{1,12,13}, S. Michiels^{12,13}, I. Bièche¹⁴, E. Rouleau¹⁵, S. Jezdic¹⁶, J-Y. Douillard¹⁶, J. S. Reis-Filho¹⁷, R. Dienstmann¹⁸ & F. André^{1,19,20*}

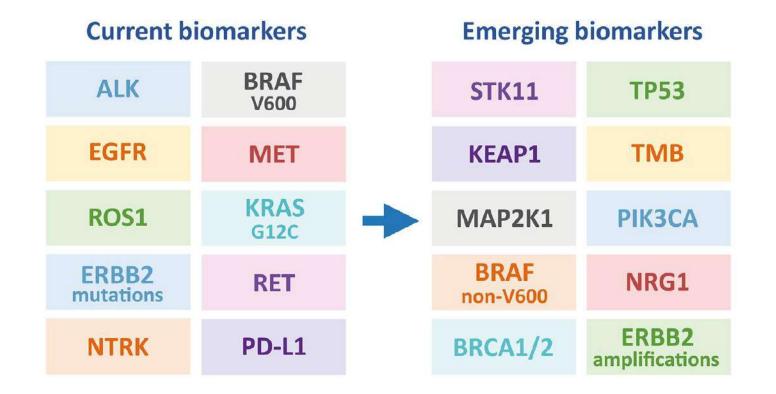
Table 2. Summary recommendations											
Tumour types	General recommendations for daily practice	Recommendation for clinical research centres	Special considerations for patients								
Lung adenocarcinoma Squamous cell lung	Tumour multigene NGS to assess level I alterations. Larger panels can be used only on the basis of specific agreements with payers taking into account the overall cost of the strategy (drug included ^a) and if they report accurate ranking of alterations. NGS can either be done on RNA or DNA, if it includes level I fusions in the panel. No current indication for tumour multigene	sequencing in the context of molecular screening programmes in order to increase access to innovative drugs and to speed up	diseases where large panels of genes are								
cancers Breast cancers	NGS No current indication for tumour multigene		and if the patient is informed about the low likelihood of benefit.								

NGS approaches

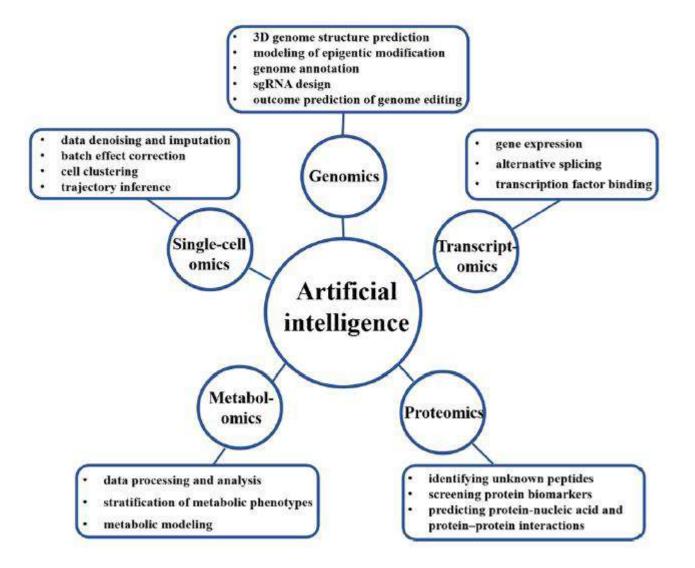
Advantages and disadvantages of the different next-generation sequencing methods for detection of fusion genes

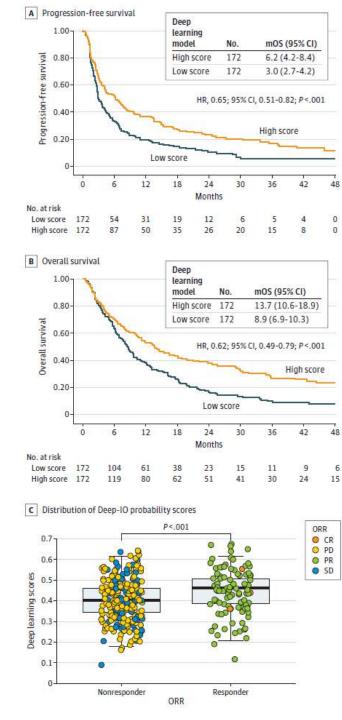
Library	Nucleic acid	Input*	Genetic alterations detected
Hybrid capture based	DNA	High (≥50 ng)	Break points of translocations (limited if long introns)
Hybrid capture based	RNA	High (≥40 ng)	Fusions (partner independent)
Amplicon based	RNA	Low (≥10 ng)	Fusions (only known fusion partners)
Anchored Multiplex Sequencing	RNA	Low (≥10 ng)	Fusions (partner independent)


* Minimum nucleic acid input suggested by manufacturers. Higher input is recommended when possible to increase the sensitivity of the test.


And the future ?

Emergent biomarkers





Application of IA technologies to single-omics analysis

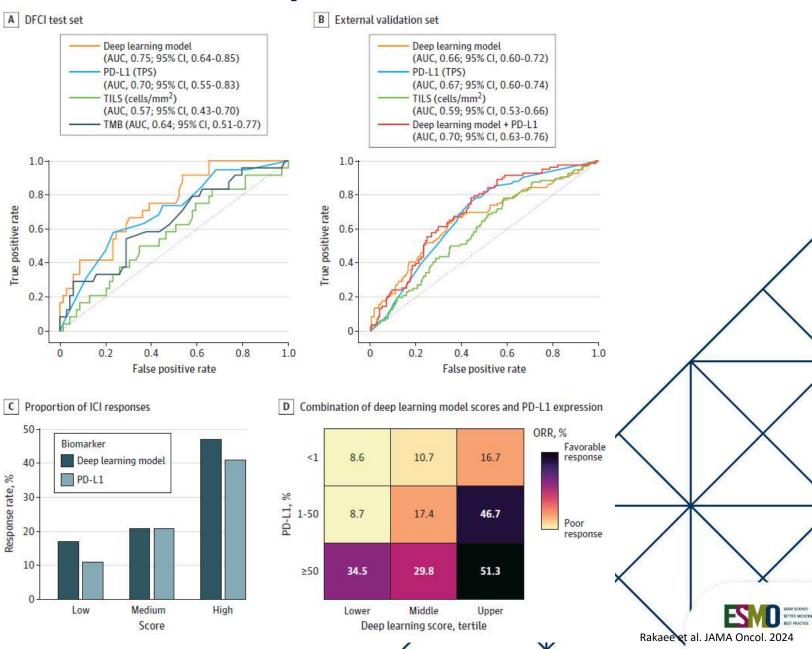
positive rate

True |

C

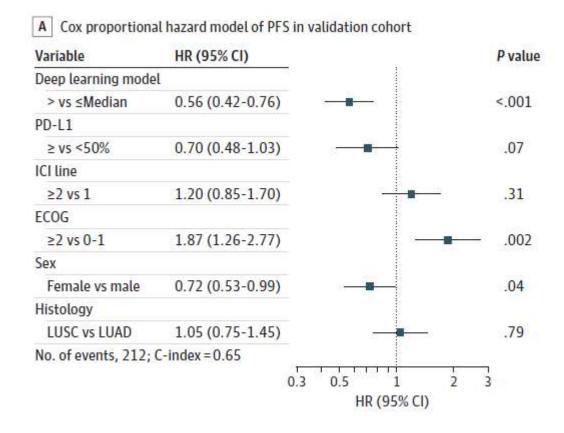
Response rate, %

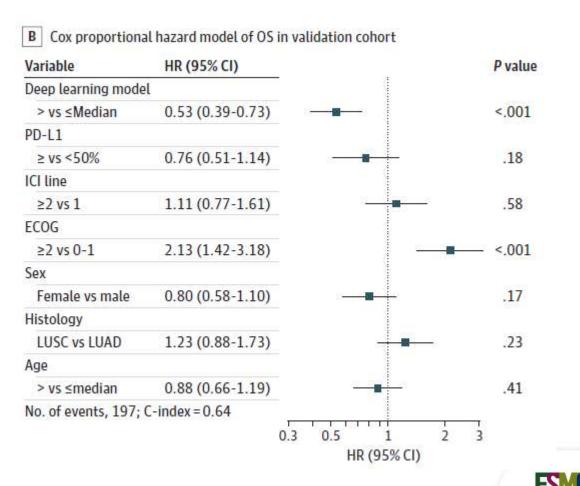
50-


40

30-

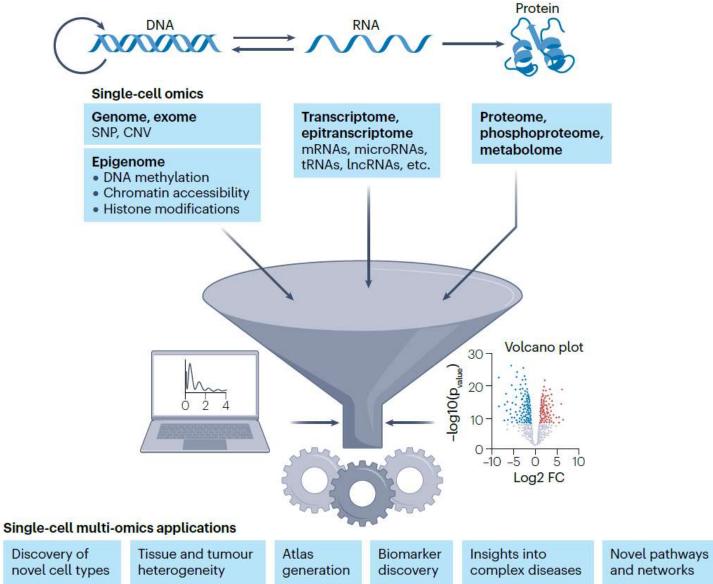
20


10-


IA Guided precision medicine

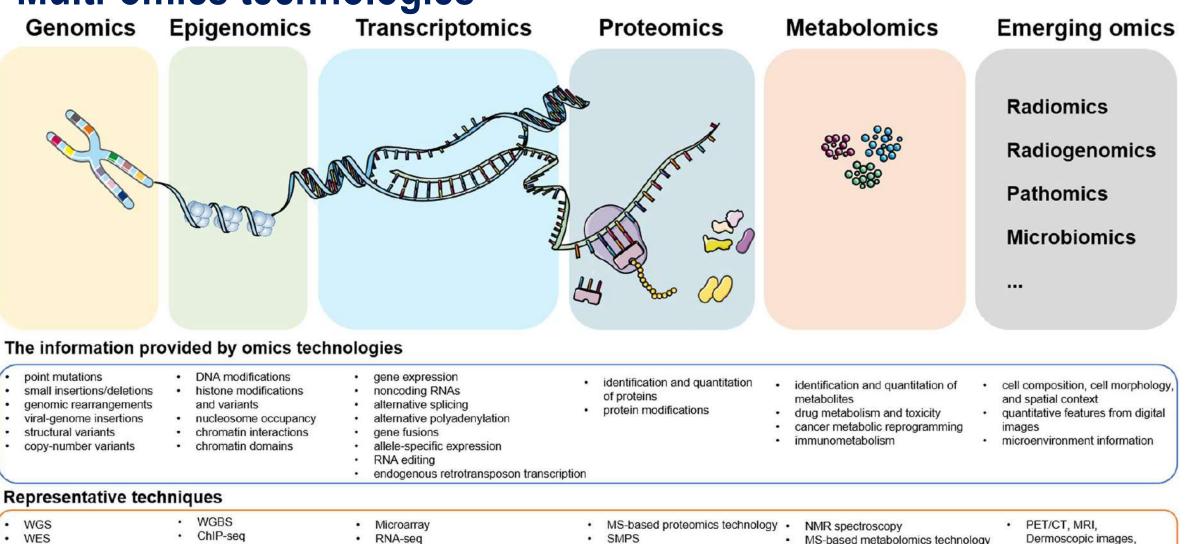
IA Guided precision medicine

Multivariable Analysis in the Validation Cohort



BETTER MEDICIN

Rakaee et al. JAMA Oncol. 2024


Multi-omics

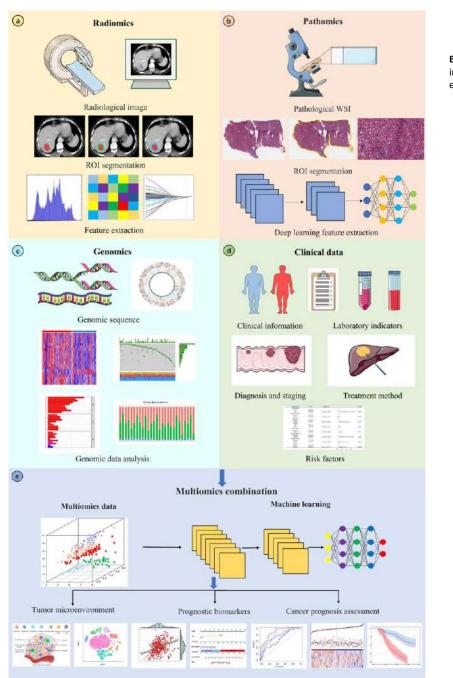
Multi-omics technologies

MeRIP-Sea Mammograms, H&E ATAC-seq WMS, 16S rRNA 3C and derivatives gene sequencing

Multi-omics technologies have been developed to profile genome sequences, epigenetic features, transcription expression, protein and metabolite abundance, and more. Additional information from an individual can be captured by emerging omics technologies, such as radiomics, pathomics, and microbiomics. The corresponding representative technologies are enumerated. Whole-genome sequencing (WGS), whole-exome sequencing (WES), whole-genome bisulfite sequencing data (WGBS), chromatin immunoprecipitation sequencing (ChIP-seq), methylated RNA immunoprecipitation sequencing (MeRIP-seq), assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromosome conformation capture (3C) technology, mass spectrometry (MS)-based proteomics nology, single-molecule protein sequencing (SMPS) technologies, Nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS)-based metabolomics technology, positron emission tomography(PET)/computed tomography (CT) scans, magnetic bxylin and eosin staining (H&E), and whole metagenome sequencing (WMS).

He et al. Semin Cancer Biol. 2023

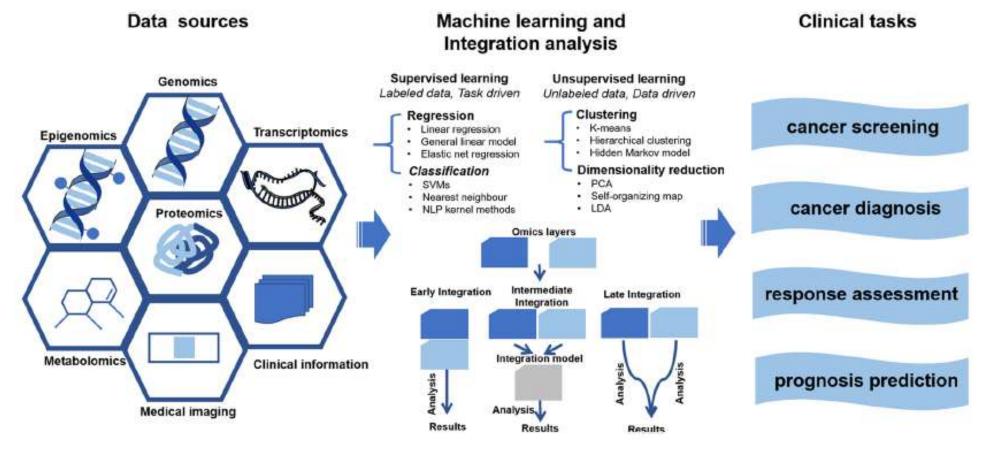
MS-based metabolomics technology


A Radiomics process mainly includes image acquisition, region of interest (ROI) segmentation, radiomics feature extraction

C Genomics process mainly includes acquisition of genomics data, analysis of genomics data, etc.

E Multiomics combinations.

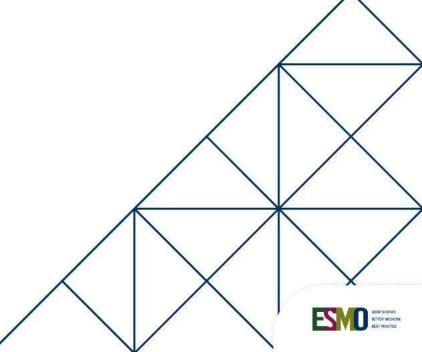
Multiomics data are fused by machine learning methods to construct combinatorial models for tumor microenvironment exploration and cancer prognosis evaluation, and to develop comprehensive prognosis biomarkers


B Pathomics process includes acquisition of pathological images, whole slide images (WSI) ROI segmentation, extraction features of deep learning

D Clinical data include demographic information, laboratory examination, diagnosis and staging, treatment method, etc.

Multi-omic combinations

Artificial intelligence support of multi-level biomedical data integration workflow


The data acquired in multi-omics studies can be integrated with other complementary modality data, including medicinal imaging, and clinical information (left panel). ML methods can be divided broadly into supervised learning and unsupervised learning. Representative ML methods are listed (middle panel). Data integration strategies for multi-omics include early, intermediate, and late integration (middle panel). AI-based multi-omics analysis has the potential to aid precision medicine. Key applications of AI-based multi-omics analysis in cancer precision medicine are shown (right panel). Support vector machines (SVMs), natural language processing (NLP) kernel methods, principal component analysis (PCA), and latent dirichlet allocation (LDA).

Conclusions

- Biomarkers testing according to level of evidence (ESCAT)
- Testing in non squamous and light or non smokers squamous lung carcinomas
- Advanced stage and nowadays for early stages
- NGS approaches with panel of genes
- RNA seq preferred as testing for gene fusions
- Perspective of integration of multi-omics and IA

ESMO DEEP DIVE: LUNG CANCER

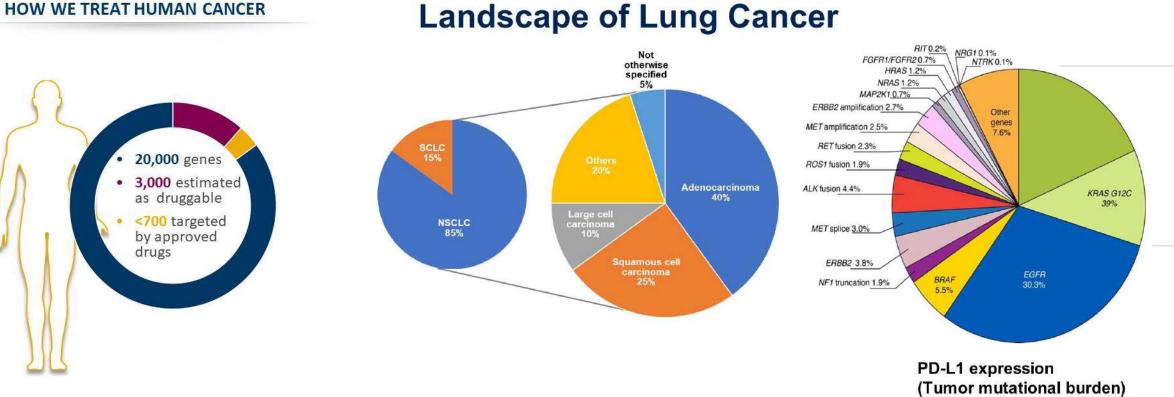
PRECISION ONCOLOGY IN LUNG CANCER - DIAGNOSTICS

Harnessing liquid biopsy for diagnosis, monitoring

Christian Rolfo, MD, PhD, MBA, Dr.hc.

Professor of Medicine Director Division Medical Oncology Associate Director for Early Phase Clinical Trials The James Comprehensive Cancer Center, The Ohio State University

Disclosures

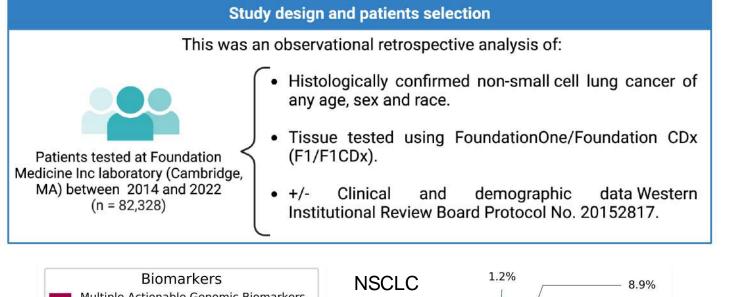


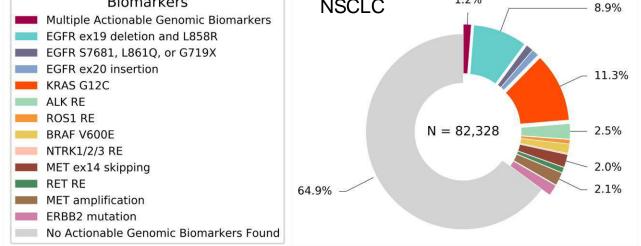
- Advisory Board: AstraZeneca, Daiichi Sankyo, Regeneron and Novocure; Bristol-Myers Squibb (BMS), Novartis, Invitae, Guardant Health, COR2ED, Bayer, Boehringer Ingelheim, Abbvie, Invitae, Janssen, EMD Serono
- Research Grant: Astra Zeneca, Thermo Fisher, Oncohost, Lung Cancer Research Foundation, National Foundation for Cancer Research, and U54 (National Institute of Health)
- Research collaboration: GuardantHealth, Foundation Medicine, Roche Diagnostics, EMD Serono
- Scientific advisory board member of Imagene
- Leadership roles: in International Society of Liquid Biopsy, The European School of Oncology, International Association for Study of Lung Cancer, and Oncology Latin American Association.
- Editor role: Editor in chief of CROH and Honorary editor at Journal of Liquid Biopsy Elsevier. Editorial board Lung Cancer and ILCN (IASLC).

Galbraith S. ASCO 2024

ESMO DEEP DIVE: LUNG CANCER

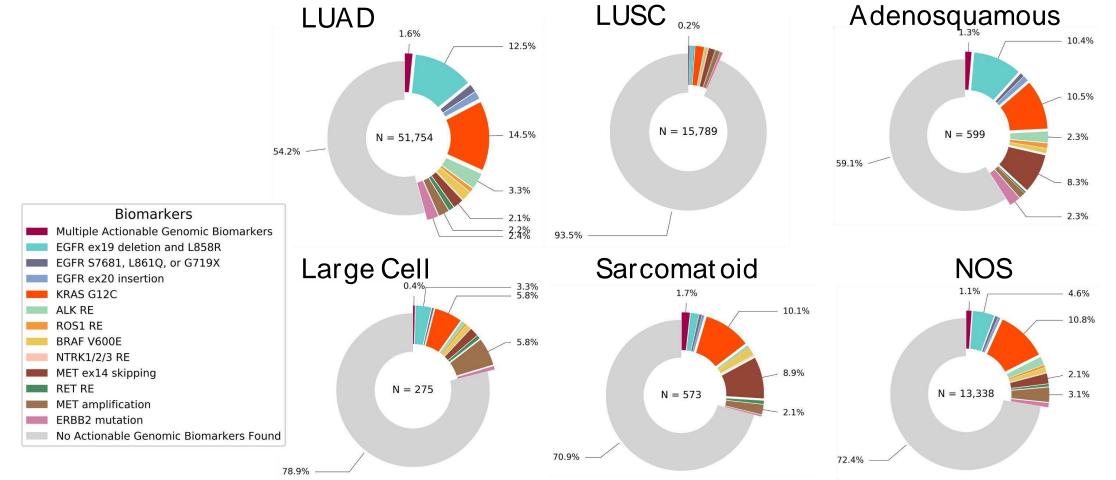
SMALL MOLECULES HAVE TRANSFORMED


WHY TESTING?



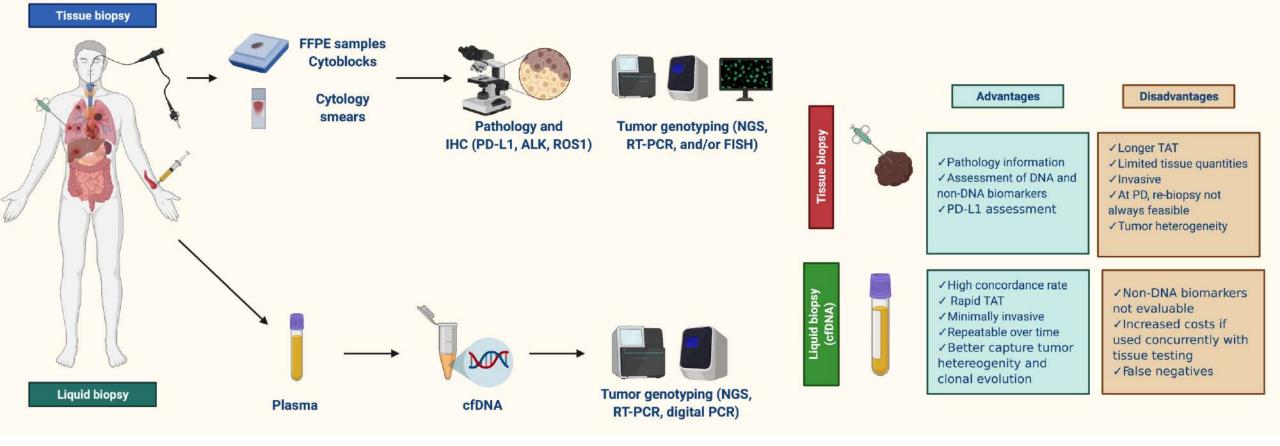
KRAS 29.9%

Molecular profiling across histologies in lung cancer across 80.000 pts with lung cancer

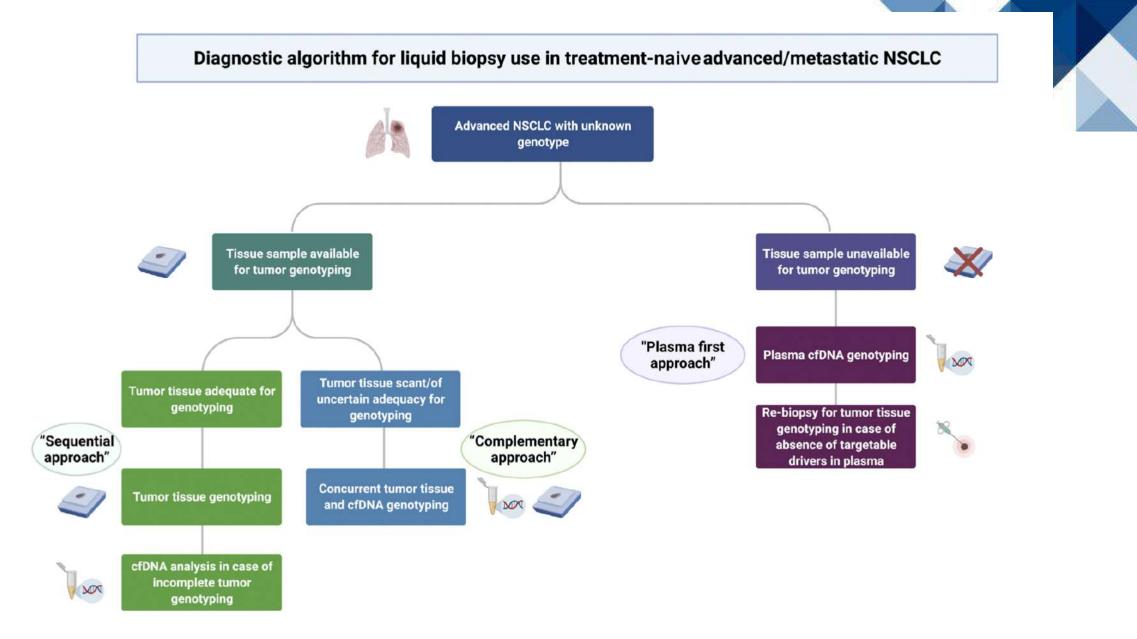


Russo A (Rolfo C), et al. ASCO 2024

Distribution of genomic alterations across histologies

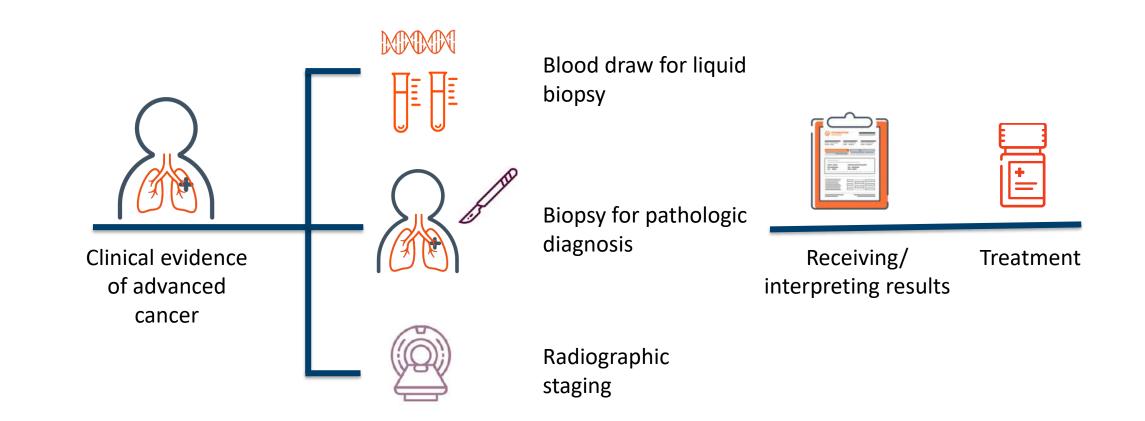


Russo A (Rolfo C), et al. ASCO 2024


Tissue vs. Liquid biopsy

Rolfo C, et al. J Thorac Oncol 2021;16(10):1647-1662.

ESMO DEEP DIVE: LUNG CANCER

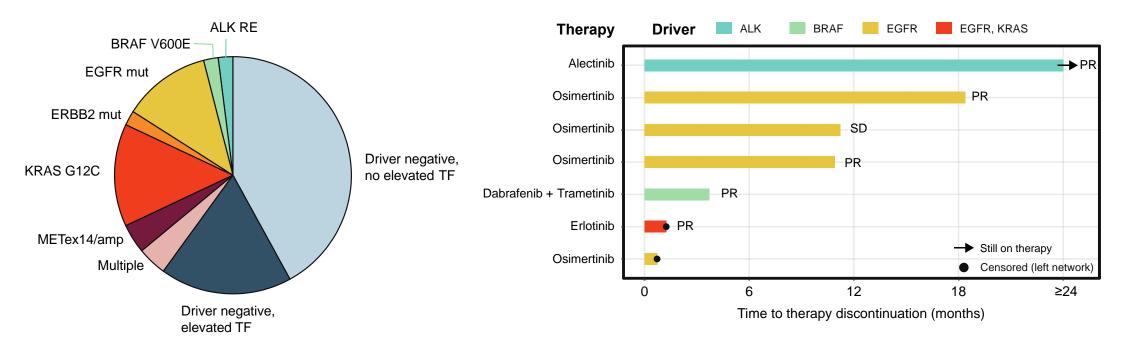


Rolfo et al, JTO 2021 Oct;16(10):1647-1662

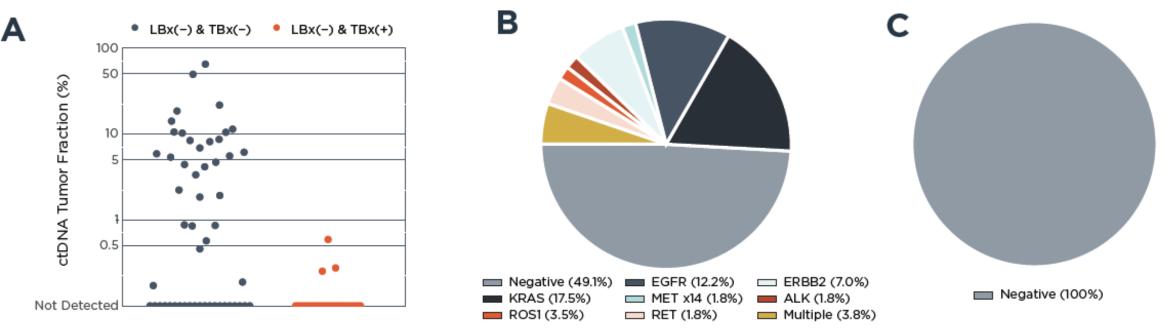
ESMO DEEP DIVE: LUNG CANCER

Expedited diagnostic odyssey

stacking diagnostic steps may be able to shorten the diagnostic odyssey


Russo A. et al (Rolfo C.) JCO PO, Feb 2024

36% of early LBX samples were positive for an actionable NCCN driver



9 (18%) of patients were NCCN driver negative with estimated tumor fraction (TF) \ge 10% (presumed true negatives) 7 driver+ patients received a 1L matched targeted therapy with a median TTD of 11 months and real-world response (PR) in majority of patients

Russo A. et al (Rolfo C.) JCO PO, Feb 2024

ESMO DEEP DIVE: LUNG CANCER

ctDNA tumor fraction informs the relative benefit from reflex to TBx CGP

Figure 7: A) 24/81 (30%) patients with reflex TBx after negative LBx had a LBx TF \geq 1% and, given high NPV for driver alterations, might have avoided reflex to confirmatory TBx. **B)** Amongst patients with TF <1%, 51% (29/57) of patients had a driver mutation detected on TBx reflex while **C)** no driver mutations (0%) were seen for patients with TF \geq 1%

Rolfo C et al, Clin Cancer Research, April 10, 2024

ESMO DEEP DIVE: LUNG CANCER

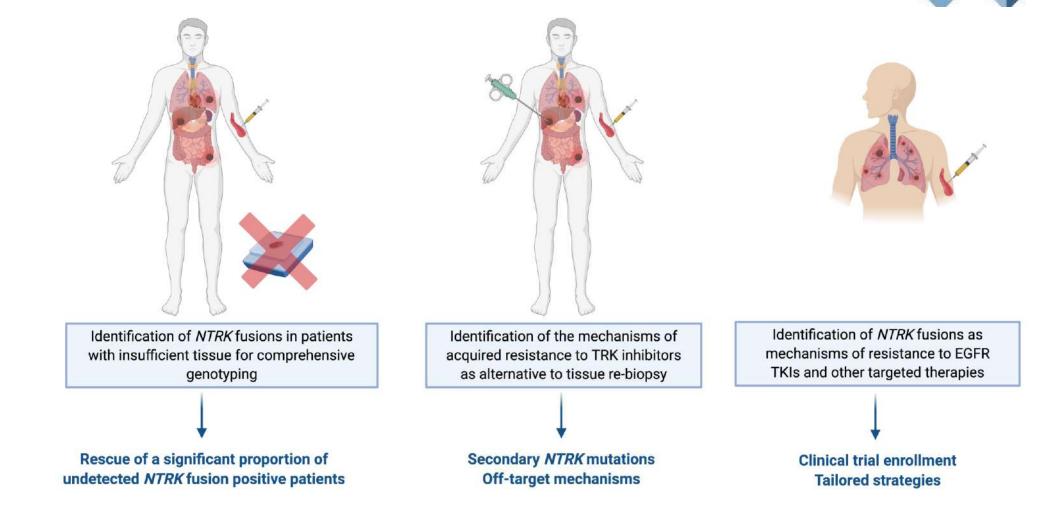
Liquid biopsies (lbx) and tissue biopsies (tbx) for identifying MET exon 14 skipping (metex14) in advanced NSCLC: analyses from the phase II VISION study of tepotinib

METex14 skipping test during prescreening/screening **Prognostic Value** (N=7,937)of Liquid Biopsy No TBx taken (n=5,650) ← No LBx taken (n=886) TBx test for METex14 skipping LBx test for METex14 skipping (n=2,287)(n=7,051)Not evaluable Not analyzed Not evaluable Not analyzed Positive Negative Positive Negative (n=273; (n=1,316; (n=430;(n=268; (n=291; (n=6,685; (n=42;(n=33; 11.9%) 57.5%) 18.8%) 11.7%) 4.1%) 94.8%) 0.6%)0.5%)Enrolled Enrolled (n=178)(n=208) $T+/L_{N/A}$ T+/L-T+/L+ T-/L+ $T_{N/A}/L+$ Overall n=28 n=106 n=74 n=98 (n=313) (8.9%) (33.9%)(23.6%)(31.3%)n=6 (1.9%) 1L n=17 n=52 n=42 n=50 (n=164) (10.4%) (31.7%) (25.6%) (30.5%) n=3 (1.8%) +2L n=11 n=54 n=32 n=48 (7.4%) (36.2%) (21.5%)(32.2%) (n=149) n=3 (2.0%)

Rolfo C. ASCO 2023

ESMO DEEP DIVE: LUNG CANCER

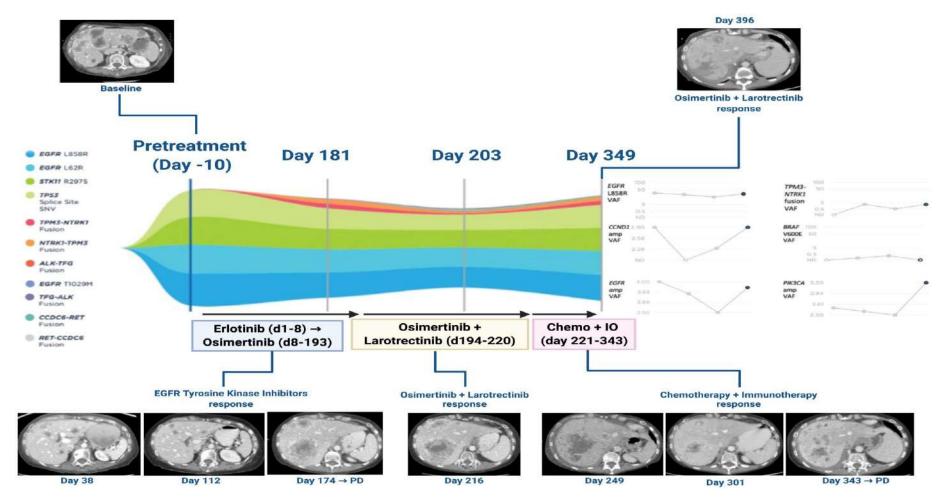
				Med		D per RECIST v1.1, m (range)						
T+ (n:	=208)		55.2 (10.2-267.5)									
L+ (n:	=178)		67.1 (11.6-227.8)									
			Target lesions				Non-target lesions					
T+ ≥3: 1			2: 30,3%	1:5	1:51.0%		1:21,6%	2: 32,29	/6	≥3: 36,1%		
Number of lesions*		L+ ≥3: 27,5	·% 2: 28,7%	4	43,8%	6 1	: 15,7%	2: 34,3%		≥3: 42,7%		
Selected esion sites	Brain Liver Liver (LL) Liver (RL Lung ⁺				3,4 2,8 11,5 10,1	1,9 1,1 3,4 2,8	23,	32,0				
	Lung (L)*			34,6 36,0			14,9 9,0	5,8				
	Lung (R)		45,5	1.0	1.1		12,5 14,6					
		100	80 60	40	20 Patie	00 ents (9	20 (6)	40	60	80	10	


	1	L	+2L			
IRC	T+/L-	T+/L+	T+/L–	T+/L+		
	(n=52)	(n=42)	(n=54)	(n=32)		
ORR, %	57.7	64.3	44.4	53.1		
(95% CI)	(43.2, 71.3)	(48.0, 78.4)	(30.9, 58.6)	(34.7, 70.9)		
mDOR, months	ne	19.4	12.6	9.9		
(95% CI)	(10.4, ne)	(7.6, ne)	(5.1, 20.8)	(4.4, 15.4)		
mPFS, months	22.1	12.1	13.8	8.2		
(95% CI)	(14.8, ne)	(7.8, 49.7)	(8.2, 24.9)	(5.5, 13.7)		
mOS, months	32.7	28.5	20.8	19.8		
(95% CI)	(15.3, ne)	(14.2, ne)	(15.6, 32.5)	(10.0, 26.5)		

Rolfo C. ASCO 2023

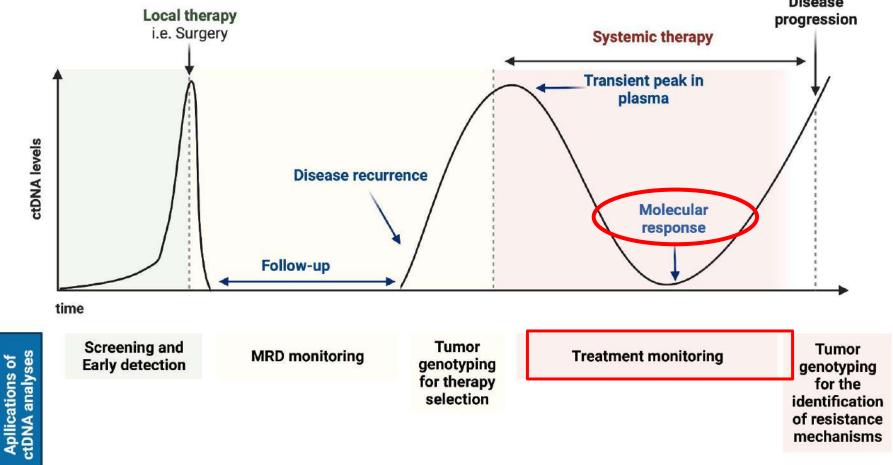
ESMO DEEP DIVE: LUNG CANCER

Potential utility of liquid biopsy in *NTRK* fusionpositive NSCLCs



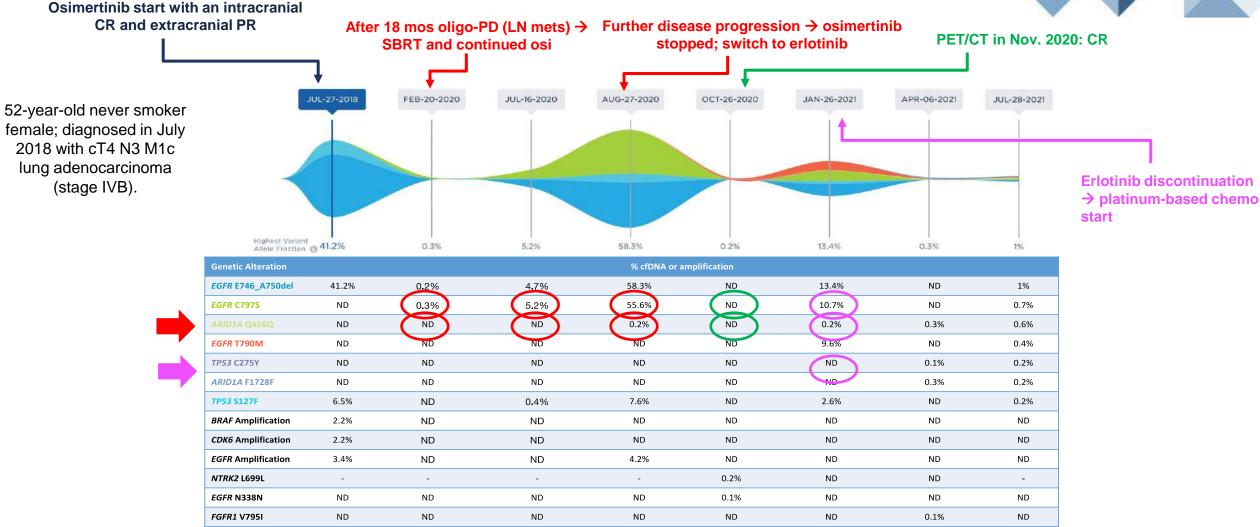
Rolfo C, et al, Br J Cancer 2021 ESMO DEEP DIVE: LUNG CANCER

NTRK fusions as mechanism of resistance

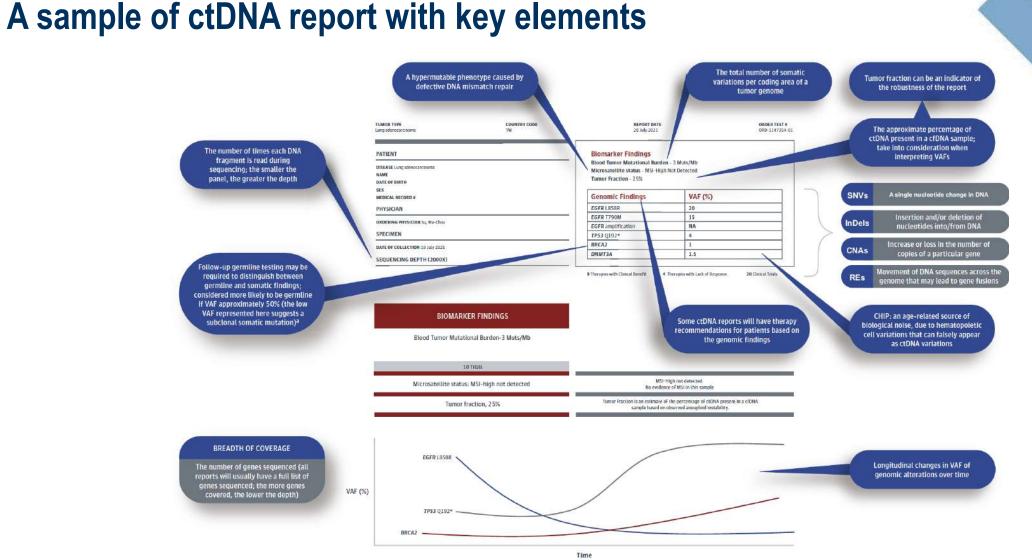


Rolfo C, et al, Br J Cancer 2021 ESMO DEEP DIVE: LUNG CANCER

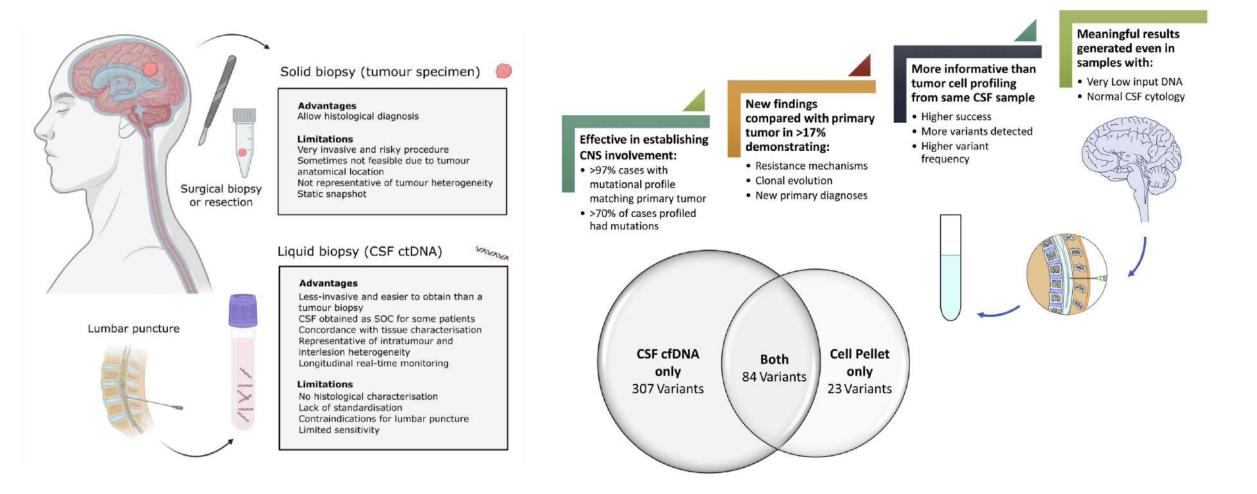
Potential clinical applications of LB in lung cancer management



Malapelle U, et al. Lung Cancer. 2022;172:53-64. ESMO DEEP DIVE: LUNG CANCER

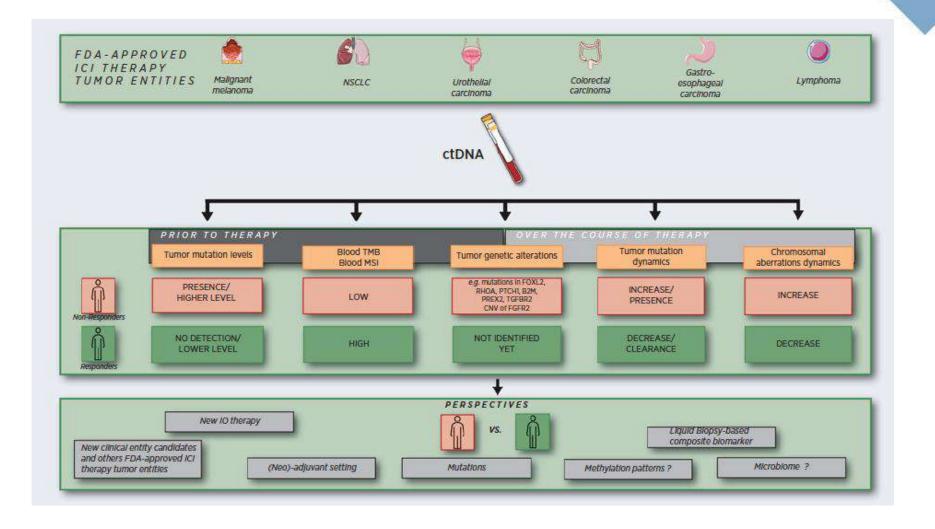

Liquid biopsy can capture the dynamic evolution of resistance mechanisms to EGFR TKIs

Russo A (Rolfo C) et al. Clin Lung Cancer 2023

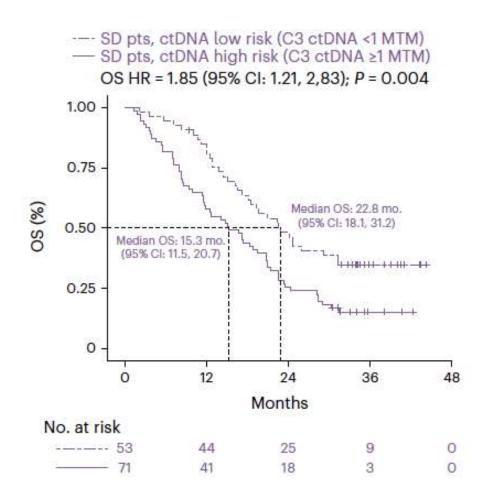

ESMO DEEP DIVE: LUNG CANCER

Krebs MG (Rolfo C) et al. JAMA oncol 2022 **ESMO DEEP DIVE: LUNG CANCER**

Special situations: brain metastasis in TKI resistance

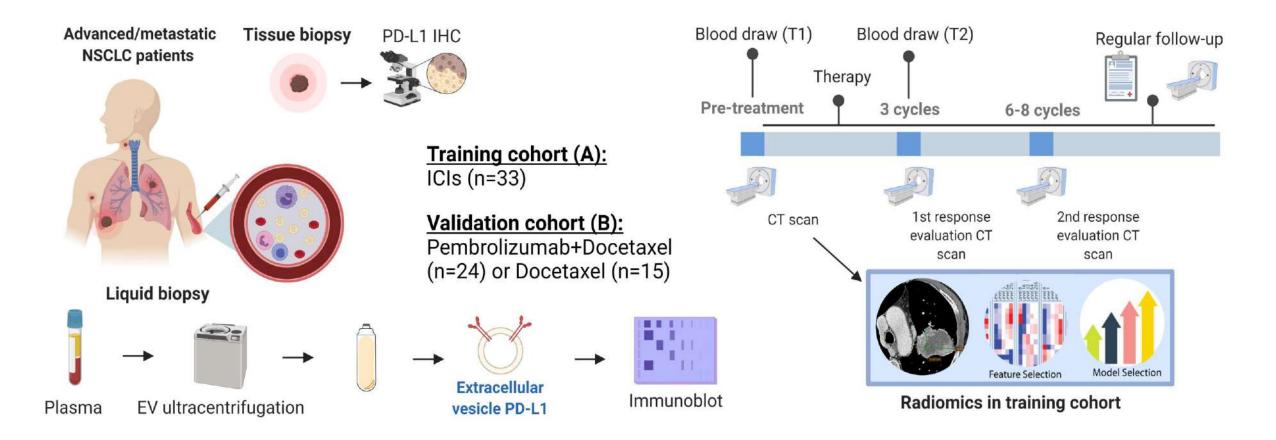

CSF demonstrates superiority of cell-free DNA over cell pellet genomic DNA for molecular profiling

Escudero et al, Cancers **2021**, 13(9), 1989; Bale et al (Arcila M.) J Mol Diagn . 2021 Jun;23(6):742-752


ESMO DEEP DIVE: LUNG CANCER

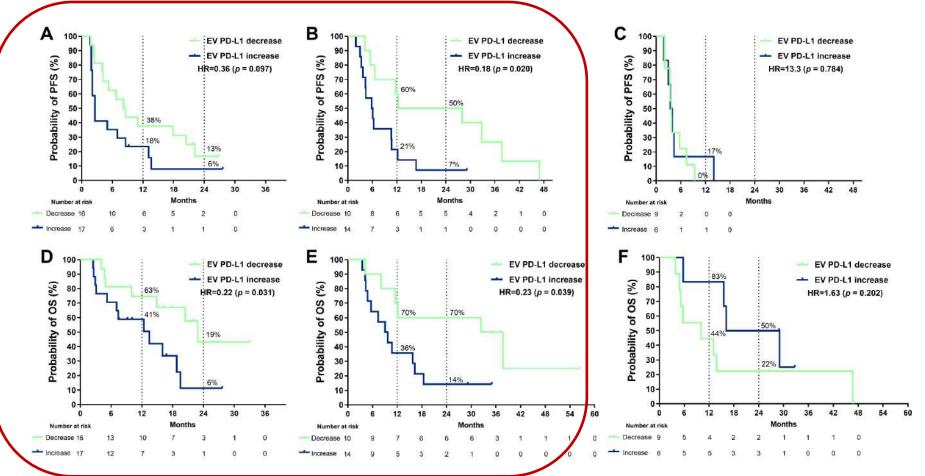
Use of liquid biopsy in immunotherapy

Stadler J, et al. Cancer Res 2022 ESMO DEEP DIVE: LUNG CANCER

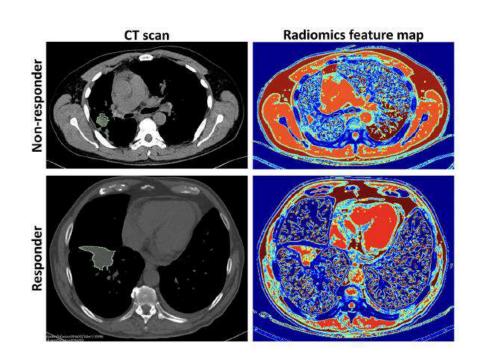

Lack of ctDNA Clearance Is Associated with Poorer Outcomes

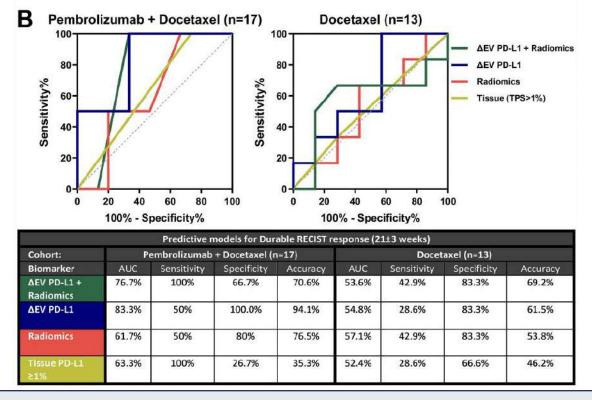
 PR pts, ctDNA low risk (C3 ctDNA <1 MTM)
 PR pts, ctDNA high risk (C3 ctDNA ≥1 MTM) OS HR = 2.18 (95% CI: 1.08, 4.38); P = 0.025 1.00 -0.75 Median OS: NA 95% CI: 26, NA) (%) SO 0.50 ledian OS: 14.3 mo (95% Cl: 9.6, 25.9) 0.25 0 12 24 36 0 48 Months No. at risk 24 20 18 7 0 25 16 8 0 42

Assaf ZJF, et al. Nat Med. 2023;29(4):859-868. ESMO DEEP DIVE: LUNG CANCER


EV PD-L1 as a predictor for immunotherapy response and outcome

de Miguel-Perez et al. (Rolfo) J Exp Clin Cancer Res (2022) 41:186 ESMO DEEP DIVE: LUNG CANCER

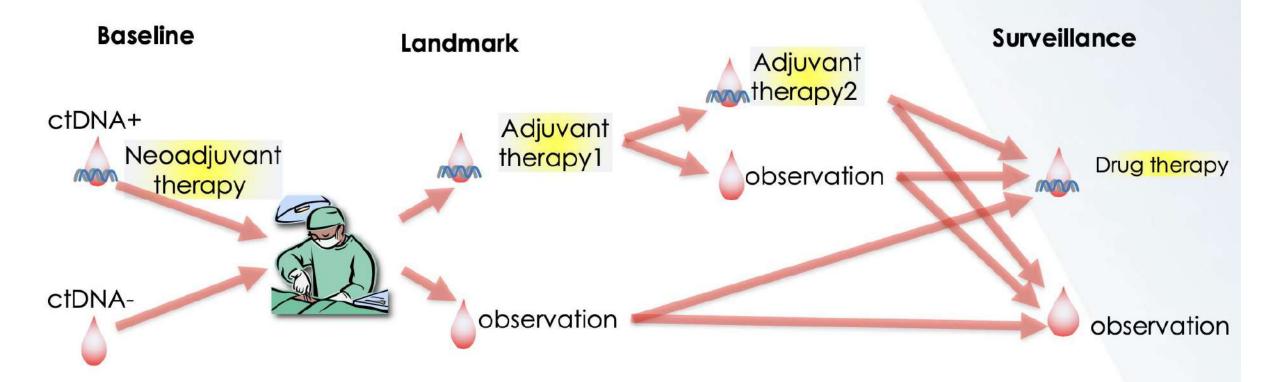

EV PD-L1 and survival outcomes



de Miguel-Perez et al. (Rolfo) J Exp Clin Cancer Res (2022) 41:186

ESMO DEEP DIVE: LUNG CANCER

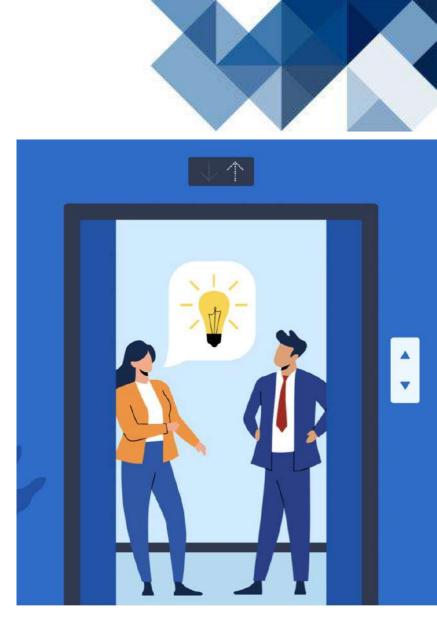
Validation of a multiomic model of plasma extracellular vesicle PD-L1 and radiomics for prediction of response to immunotherapy in NSCLC


This multiparametric model showed high sensitivity and specificity at identifying non-responders to ICIs and outperformed tissue PD-L1, being directly correlated with tumor change.

de Miguel-Perez et al. (Rolfo) Journal of Experimental & Clinical Cancer Research (2024) 43:81

ESMO DEEP DIVE: LUNG CANCER

DNA guided perioperative management in the future



Modified from Soh, Hamada Fujino, and Mitsudomi, Cancers (Basel) . 2021

ESMO DEEP DIVE: LUNG CANCER

Take home message... my elevator pitch

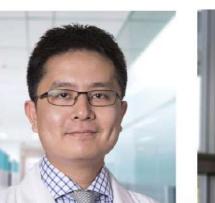
- Liquid Biopsy is an important tool for diagnosis and monitoring.
- A good opportunity to incorporate LB in immunotherapy assessment
- Integrating liquid biopsy in clinical trials is a necessity
- Use of analytes beyond ctDNA opening the door for biology understanding.

Christian Rolfo, MD, PhD, MBA, Dr.hc. ESMO DEEP DIVE: LUNG CANCER

Rolfo Lab

The James

	The Ohio State University			
U)	COMPREHENSIVE CANCER CENTER			



The James

THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER

Making Cancer History"

Icahn School of Medicine at Mount Sinai

Centre

Cancer

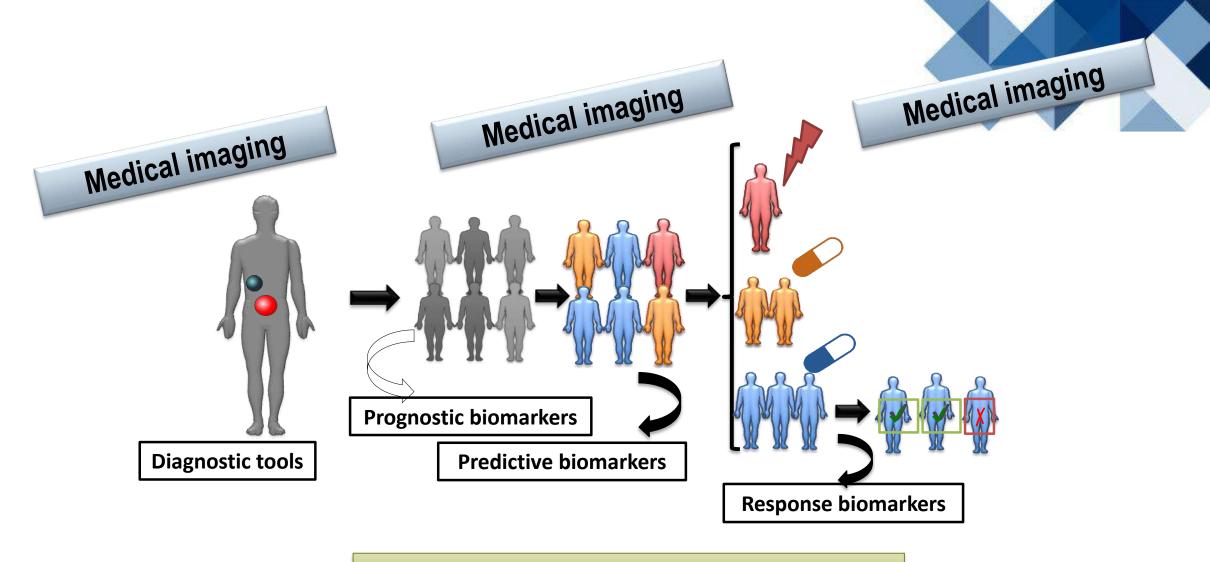
Genyo ANADA-JUNTA DE ANDALUCÍA DE GENÓMICA E INVESTIGACIÓN ONCOLÓGICA

@ChristianRolfo @RolfoLab

PRECISION ONCOLOGY IN LUNG CANCER – DIAGNOSTICS Beyond Xray vision – novel imaging technologies and radiomics

Raquel Perez-Lopez

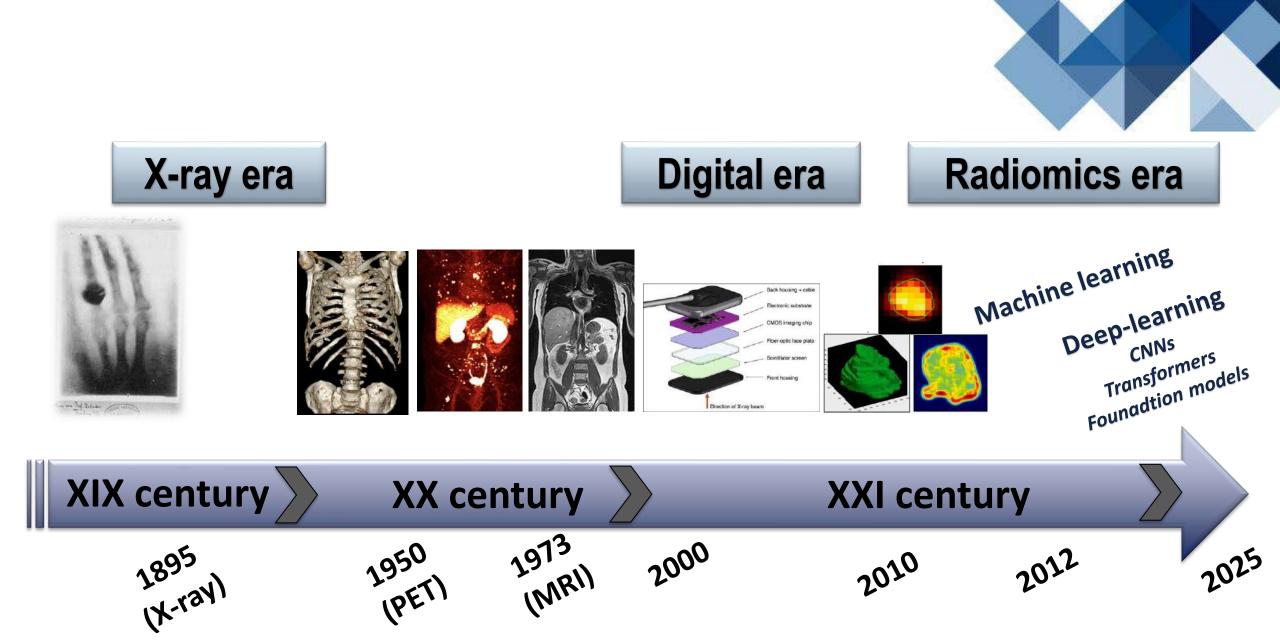
Team Leader – Radiomics Group Vall d'Hebron Institute of Oncology (VHIO). Barcelona (Spain)



DECLARATION OF INTERESTS

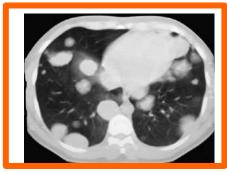
Raquel Perez-Lopez

Employment: Vall d'Hebron Institute of Oncology and Vall d'Hebron Hospital
Research Funding: CRIS Foundation, FERO Foundation, LaMarató Foundation, La Caixa
Foundation, Carlos III Instituto de Investigacion, European Commission Horizon Program.
Grant support: AstraZeneca, Roche
Steering committee / advisor role: AstraZeneca, Roche

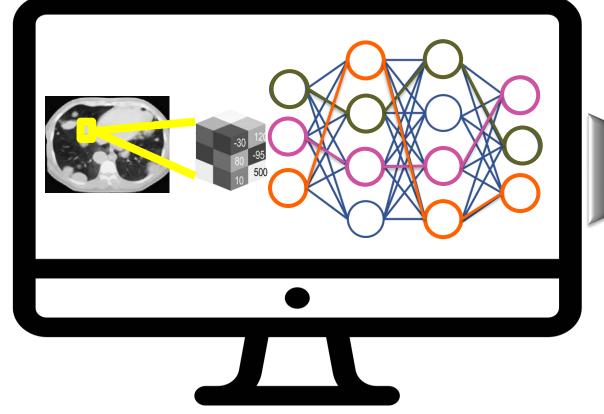


Clinical Decision Support (CDS) systems

Computer-Aided Diagnosis (CAD) systems


Therapeutic Decision Support (TDS) systems

ESMO DEEP DIVE: LUNG CANCER

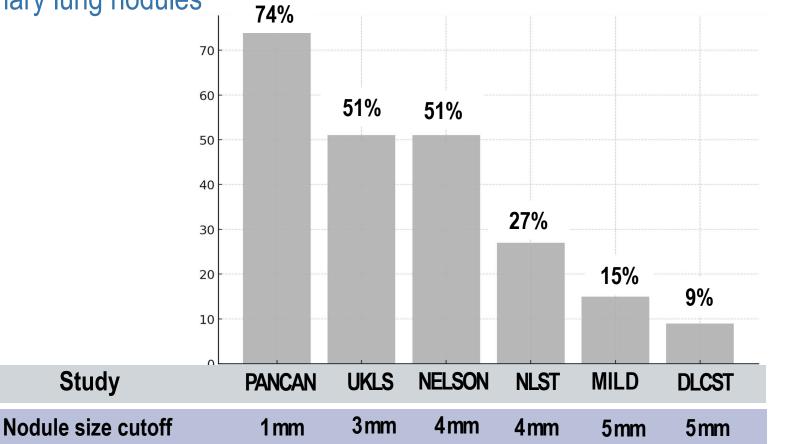


ESMO DEEP DIVE: LUNG CANCER

ESMO DEEP DIVE: LUNG CANCER

DETECTION & DIAGNOSIS

Inclusion criteria


	Recruitment period	Inclusion criteria	Primary comparison	Key outcomes
Randomised trials				
NLST ²	2002-04	Age 55–74 years; ≥30 pack-year smoking history; currently smoke or quit <15 years ago	Annual low-dose CT vs chest radiography for 3 years (n=53 454)	20% reduction in lung cancer-related mortality with low-dose CT
NELSON ³	2003-06	Age 50–74 years; >15 cigarettes per day for >25 years or >10 cigarettes per day for >30 years; currently smoke or quit ≤10 years ago	Low-dose CT at baseline and in year 1, year 3, and year 5·5 vs no screen (n=15 789)	24% reduction in lung cancer-related mortality with low-dose CT in men

Field JK, et al. Lancet Reg Health Eur 2021. PMID: 34806061 de Koning HJ, et al. N Engl J Med 2020. PMID: 31995683 NSLT Research Team. N Engl J Med 2011. PMID: PMID: 21714641

ESMO DEEP DIVE: LUNG CANCER

Prevalence of pulmonary lung nodules

Field JK, et al. Lancet Reg Health Eur 2021. PMID: 34806061 de Koning HJ, et al. N Engl J Med 2020. PMID: 31995683 NSLT Research Team. N Engl J Med 2011. PMID: PMID: 21714641

ESMO DEEP DIVE: LUNG CANCER

Lung nodule malignancy risk

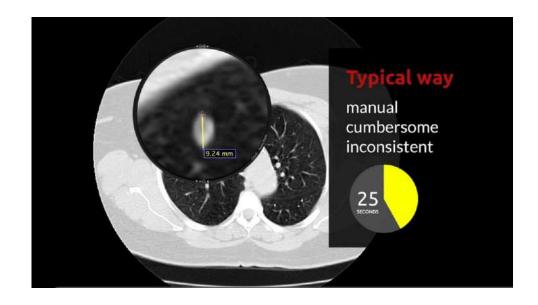
Lung-RADS® v2022

4A

4B

4X

S


Lung- RADS Category Descriptor		Findings	Management	
0		Prior chest CT examination being located for comparison (see note 9)	Comparison to prior chest CT;	
	Incomplete Estimated Population Prevalence: ~ 1%	Part or all oflungs cannot be evaluated	Additional lung cancer screening CT imaging needed;	
	Prevenence: "The	Findings suggestive of an inflammatory or infectious process (see note 10)	1-3 month LDCT	
1	Negative	No lung nodules OR	12-month screening LDCT	
	Estimated Population Prevalence: 39%	Nodule with benign features: • Complete, central, popcorn, or concentric ring calcifications OR • Fat-containing		
2	Benign - Based on imaging features or indolent behavior Estimated Population Prevalence: 45%	Juxtapleural nodule: < 10 mm (524 mm ²) mean diameter at baseline or new AND < Solid; smooth margins; and oval, lentiform, or triangular shape		
		Solid nodule: • < 6 mm (< 113 mm ²) at baseline OR • New < 4 mm (< 34 mm ²)		
		Part solid nodule: • < 6 mm total mean diameter (< 113 mm ²) at baseline		
		Nen solid nodule (GGN): < 30 mm (< 14,137 mm²) at beseline, new, or growing OR > ≥ 30 mm (≥ 14,137 mm²) stable or slowly growing (see note 7)		
		Airway nodule, subsegmental - at baseline, new, or stable (see note 11)		
		Category 3 lesion that is stable or decreased in size at 6-month follow-up CT OR Category 4B lesion proven to be benign in etiology following appropriate diagnostic workup		
3	Probably Benign - Based on imaging features or behavior Estimated Population Prevalence: 9%	Solid nodule: + ≥ 6 to < 8 mm (≥ 113 to < 268 mm ³) et baseline OR + New 4 mm to < 6 mm (34 to < 113 mm ²)		
		Part solid nodule: • ≥ 6 mm total mean diameter (≥ 113 mm ³) with solid component < 6 mm (< 113 mm ³) at baseline OR • New < 6 mm total mean diameter (< 113 mm ³)	6-month LDCT	
		Non solid nodule (GGN): • ≥ 30 mm (≥ 14,137 mm²) at baseline or new		
		Atypical pulmonary cyst: (see note 12) • Growing cystic component (mean diameter) of a thick-walled cyst		
		Category 4A lesion that is stable or decreased in size at 3-month follow-up CT (excluding airway nodules)		

	Solid nodule: - ≥ 8 to < 15 mm (≥ 268 to < 1,767 mm ³) at baseline OR - Growing < 8 mm (< 268 mm ³) OR - New 6 to < 8 mm (113 to < 268 mm ³)	3-month LDCT; PET/CT may be considered if there is a ≥ 8 mm (≥ 268 mm ²) solid nodule or solid		
Suspicious Estimated Population Prevalence: 4%	Part solid nodule: $\ge 6 \text{ mm total mean diameter} (\ge 113 \text{ mm}^3) \text{ with solid component} \ge 6 \text{ mm to} < 8 \text{ mm}$ $(\ge 113 \text{ to} < 268 \text{ mm}^3) \text{ at baseline OR}$ New or growing < 4 mm (< 34 mm ³) solid component			
	Airway nodule, segmental or more proximal - at baseline (see note 11)	component		
	Atypical pulmonary cyst: (see note 12) • Thick-walled cyst OR • Multilocular cyst at baseline OR • Thin- or thick-walled cyst that becomes multilocular			
	Airway nodule, segmental or more proximal - stable or growing (see note 11)	Referral for further clinical evaluation		
	Solid nodule: • ≥ 15 mm (≥ 1767 mm²) at baseline OR • New or growing ≥ 8 mm (≥ 268 mm²)	Diagnostic chest CT with or without contrast:		
Very Suspicious Estimated Population	Part solid nodule: • Solid component ≥ 8 mm (≥ 268 mm ³) at baseline OR • New or growing ≥ 4 mm (≥ 34 mm ³) solid component	PET/CT may be considered if there is a ≥ 8 mm (≥ 268 mm ³) solid nodule or solid		
Prevalence: 2%	Atypical pulmonary cyst: (see note 12) • Thick-walled cyst with growing wall thickness/nodularity OR • Growing multilocular cyst (mean diameter) OR Multilocular cyst with increased loculation or new/increased opacity (nodular, ground glass, or consolidation)	component; tissue sampling; and/or referral for further clinical evaluation Management depends on		
	Slow growing solid or part solid nodule that demonstrates growth over multiple screening exams (see note 8)	clinical evaluation, patient preference, and the probability of malignancy (see note 13)		
Estimated Population Prevalence: < 1%	Category 3 or 4 nodules with additional features or imaging findings that increase suspicion for lung cancer (see note 14)			
Significant or Potentially Significant Estimated Population Prevalence: 10%	Modifier: May add to category 0-4 for clinically significant or potentially clinically significant findings unrelated to lung cancer (see note 15)	As appropriate to the specific finding		

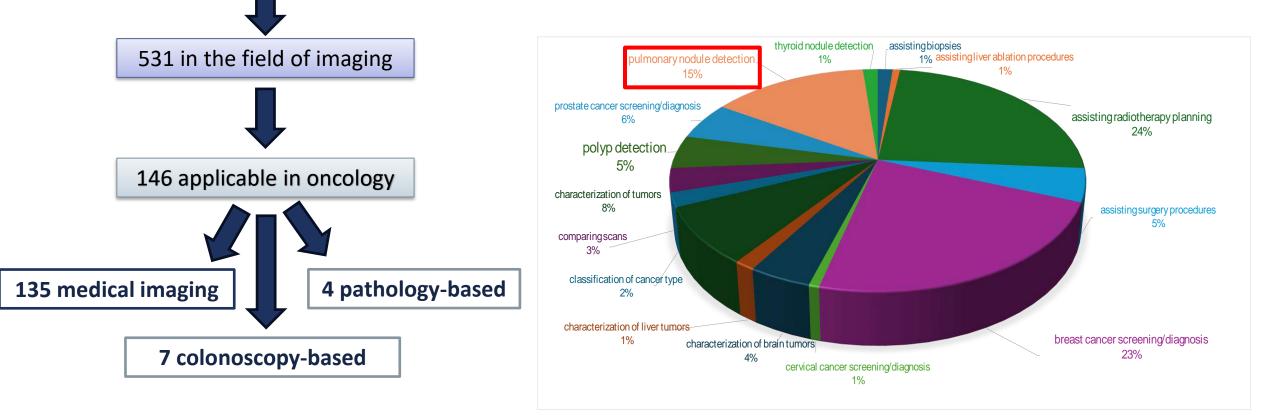
American College of Radiology Committee on Lung-RADS[®]. Lung-RADS Assessment Categories 2022. Available at https://www.acr.org/-/media/ACR/Files/RADS/Lung-RADS/Lung-RADS-2022.pdf

ESMO DEEP DIVE: LUNG CANCER

Al-aided lung nodule malignancy risk assessment

Quanyang W, et al. Cancer Med. 2024. PMID: 38581113

ESMO DEEP DIVE: LUNG CANCER


TABLE 4 The latest artificial intelligence-based methods for classifying benign and malignant nodules.

Year	Authors	Data source	Method	Quality index	Quality index value
2016	Petousis et al. ¹¹²	NLST dataset	DBNs Including three expert-driven DBNs and two DBNs derived from structure learning methods	AUC	>0.75
2018	Filho et al. ⁷⁷	LIDC-IDRI	Topology-based phylogenetic diversity indices are proposed for features engineering and selection. Feature data are fed to 2D CNNs	Accuracy AUC	0.9263 0.934
2018	Causey et al. ⁹⁰	LIDC-IDRI	Training 3D CNN models and collecting output features. A 3D CNN is then used for malignancy classification based on quantitative image features	AUC	0.99
2018	Dey et al. ⁹¹	LIDC-IDRI	Performance comparison between 3D DCNN and 3D DenseNet variants	Accuracy AUC	0.899
2019	Balagurunathan et al. ¹¹³	NLST dataset	Optimal linear classifiers	AUC	0.85
2019	Al-Shabi et al. ¹¹⁴	LIDC-IDRI	Deep Local-G lobal networks containing residual blocks and non-local blocks	AUC	0.9562
2019	Chen et al. ¹¹⁵	LIDC-IDRI	Using Med3D models pre-trained on ResNets, initialize classification networks using Med3D models	Accuracy	0.9192
2020	Harsono et al. ⁸¹	LIDČ-IDRI	Integrated modified pre-trained inflated 3D ConvNct with FPN	AUC	0.8184
2020	Yang et al. ¹¹⁶	LIDČ-IDRI	Self-attention transformer based on 3D DenseNets and MIL algorithms	AUC	0.932
2021	Yu et al. ¹⁰³	LIDC-IDRI	Res-trans networks	Accuracy AUC	0.9292 0.9628
2021	Halder et al. ¹¹⁷	LIDC-IDRI	Two-path morphological 2D CNN	Accuracy AUC	0.9610 0.9936
2019	Xie et al. ⁷⁸	LIDC-IDRI	MV-KBC model can learn 3-D lung nodule characteristics by decomposing a 3D nodule into nine fixed views	Accuracy AUC	0.916 0.957
2018	Zhu et al. ⁵⁰	LIDC-IDRI	R-CNN-GBM	Accuracy	0.9274
2019	Nasrullah et al. ⁶¹	LIDC-IDRI	CMixNet-GBM	Sensitivity	0.94
2023	Mikhael et al. ¹¹⁸	NLST	3D Resnet	AUC	0.92
2023	Bushara et al. ¹¹⁹	LIDC	LCD-CapsNet	Accuracy	0.94
				AUC	0.989
2023	Irshad et al. ¹²⁰	Exasens dataset	An IGWO-based DCNN model	Accuracy	98.27%
				Sensitivity	97.67%

FDA APPROVED AI-ENABLED MEDICAL DEVICES

692 U.S. Food and Drug Administration (FDA) approved AI-enabled medical devices

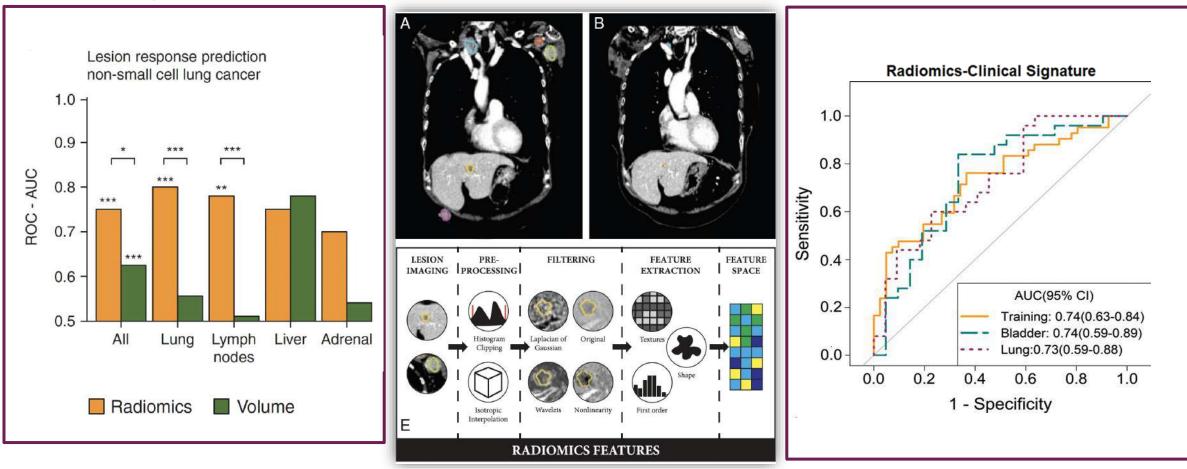
Joshi G et al, Electronics 2024. doi: 10.3390/electronics13030498

* Updated 19 October, 2023

https://radiology.healthairegister.com/

ENHANCED RESPONSE PREDICTIONS AND ON-TREATMENT EVALUATION

Computational analysis of standard imaging

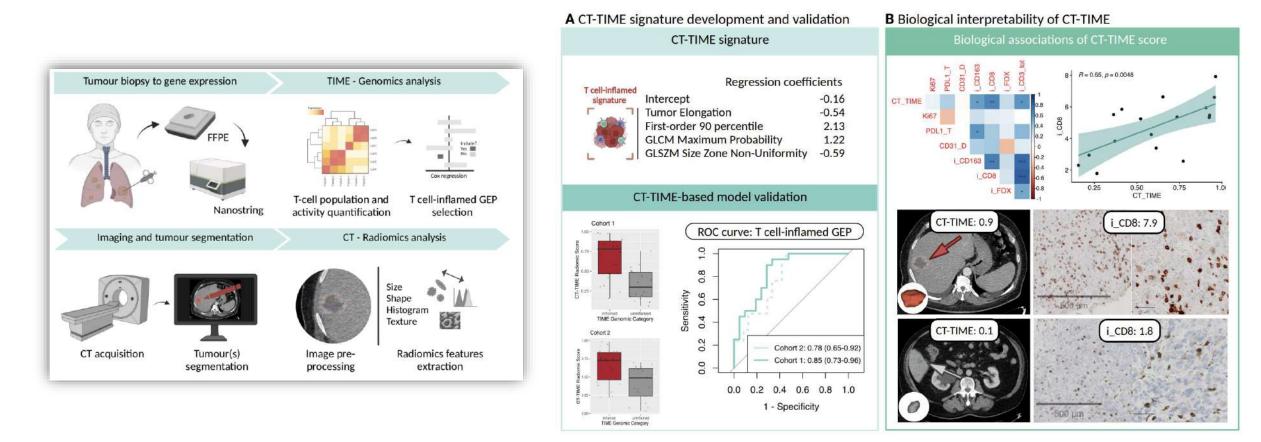


IMMUNE-RADIOMICS SIGNATURES

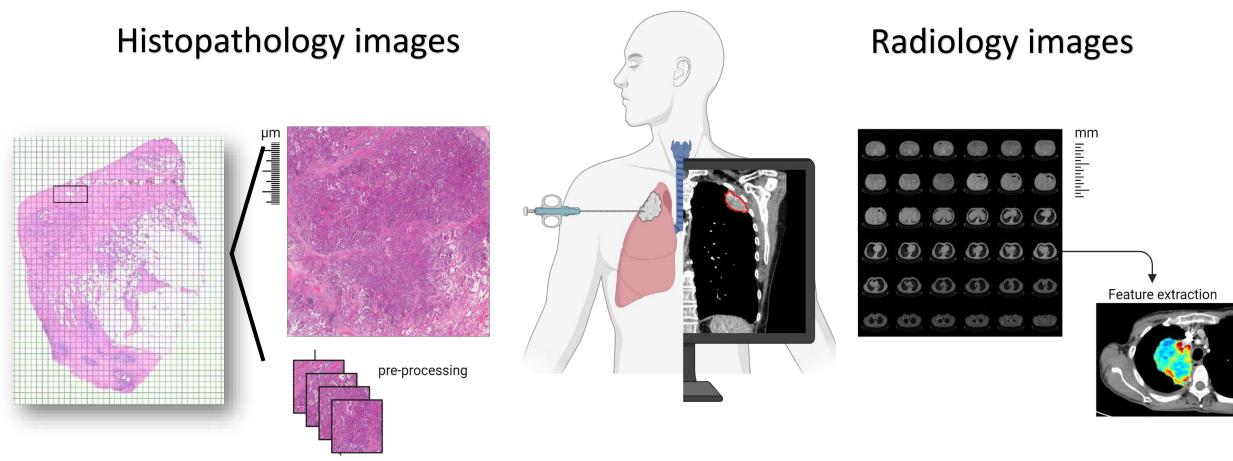
End-to-end signature for response prediction

Trebeschi S, et al. Ann Oncol. 2019. PMID: 30895304

ESMO DEEP DIVE: LUNG CANCER


Ligero M, et al. Radiology. 2021.PMID: 33497314

IMMUNE-RADIOMICS SIGNATURES

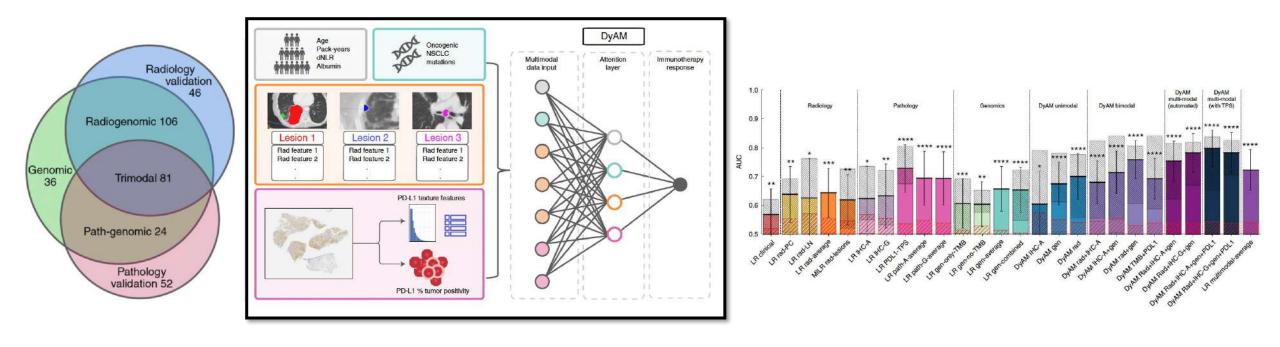

Biomarker prediction

Bernatowicz K, et al. J Immunother Cancer. 2025. PMID: 39800381

ESMO DEEP DIVE: LUNG CANCER

Pathology and radiology provide valuable information at different scales

Perez-Lopez R, et al .Nat Rev Cancer. 2024. PMID: 38755439 Ghaffari Laleh N, et al. Clin Cancer Res. 2023. PMID: 36083132


ESMO DEEP DIVE: LUNG CANCER

Multimodal data integration improves AI-model performace

Response prediction to PD-L1 inhibitors in NSCLC

Vanguri RS, et al. Nat Cancer. 2022.PMID: 36038778

ESMO DEEP DIVE: LUNG CANCER

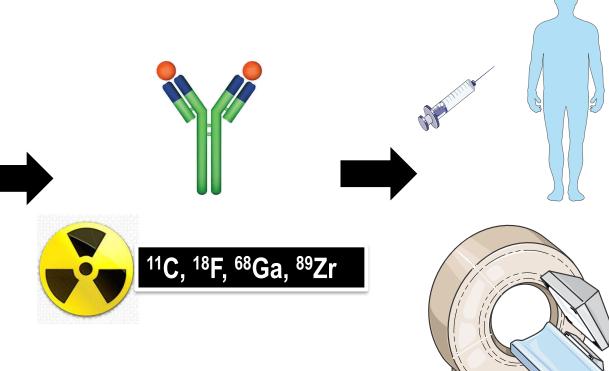
ENHANCED RESPONSE PREDICTIONS AND ON-TREATMENT EVALUATION

Advanced imaging techniques

Imaging of immune cell dynamics with immunotracers

Macrophages: CD206, PD-L1, S100A9

T-lymphocytes: CD4, CD8, CD69, PD-1



B-lymphocytes: CD19, CD20

Phagocytes: CD163

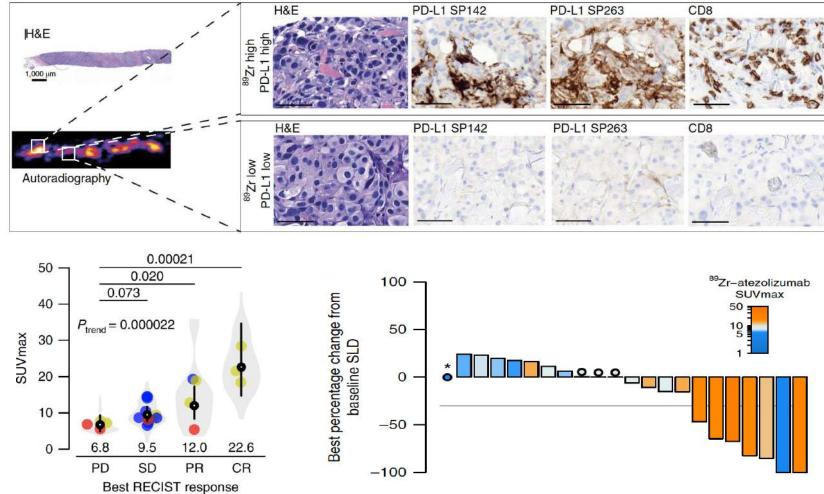
ESMO DEEP DIVE: LUNG CANCER

⁸⁹Zr-atezolizumab PET-CT for assessing response to PD-L1 inhibition

22 patients with

non-small cell lung cancer (NSCLC), bladder cancer or triple-negative breast cancer (TNBC)

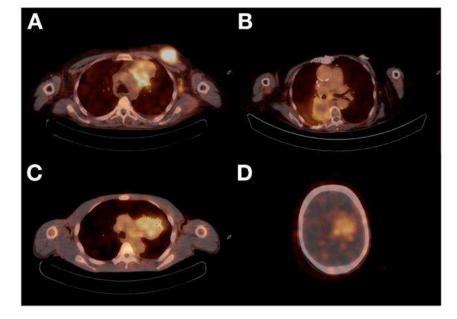
0.0097 0.00091 0.33 0.0032 40 40 SUVmax 0.22 SUVmax 20 20 0 10.5Lung Bone node 0 Bladder NSCLC THEC 15.4 Liver

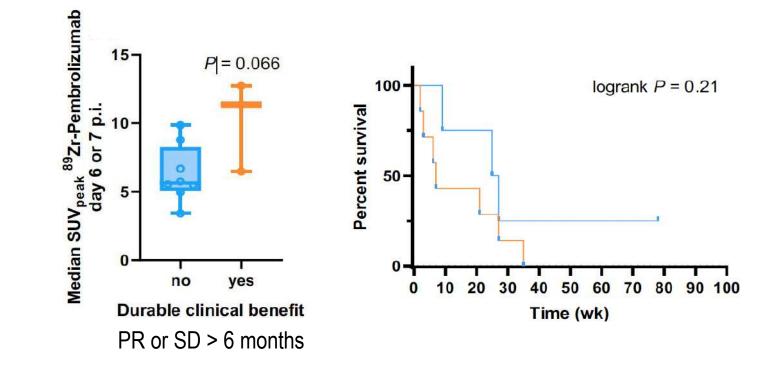

Bensch F, et al. Nat Med. 2018. PMID: 30478423

ESMO DEEP DIVE: LUNG CANCER

⁸⁹Zr-atezolizumab PET-CT for assessing response to PD-L1 inhibition

Bensch F, et al. Nat Med. 2018. PMID: 30478423





⁸⁹Zr-pembrolizumab PET-CT for assessing response to PD-1 inhibition

12 NSCLC patients eligible for pembrolizumab monotherapy as first- or later-line therapy

SUVpeak on day 6-7, when tumour uptake was the highest and blood-pool activity was the lowest (best tumour-to-background ratio)

Niemeijer AN, et al. J Nucl Med. 2022. PMID: 34272316

ESMO DEEP DIVE: LUNG CANCER

Take home messages

- Al-driven tools enhance lung nodule detection and size measurements.
- Al models are advancing the ability to distinguish between benign and malignant nodules. These improvements are expected to further refine risk assessment in the near future, reducing unnecessary follow-ups and invasive biopsies.
- AI and advanced imaging techniques may help immunotherapy selection by providing non-invasive, real-time insights into the tumour microenvironment.

asociación española contra el cáncer

rperez@vhio.net
https://vhio.net/pf/radiomics-group/

ESMO DEEP DIVE: LUNG CANCER

ESMO DEEP DIVE: LUNG CANCER

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

