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i
INTRODUCTION vV

Learning Objectives

To become better equipped for the critical analysis of real-world data and their proper interpretation for
clinical practice.

To familiarize with commonly used concepts and definitions among real-world evidence studies in oncology.

To recognize common biases in real-world evidence studies and how they can impact the interpretation of
study results.

To understand the importance and benefits of structured reporting of real-world data.
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HOW OFTEN IN YOUR CLINICS

DO YOU HAVE TO TREAT PATIENTS
FOR WHOM YOU DON'T HAVE
CLINICAL TRIAL EVIDENCE TO
FULLY GUIDE YOUR DECISION?
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patients with cancer
participate in therapeutic
clinical trials

Unger JM, Shulman LN, Facktor MA, et al. J Clin Oncol. 2024 Jun 20;42(18):2139-2148
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SR
&MAs

RCTs

Cohort studies
Case-control studies

Case series

Expert opinion
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SR&MAs, systematic review with meta-analysis
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T INCREASED NUMBER OF RWE PUBLICATIONS (2020-2022)
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Half of studies were conducted in Asia 87% of studies were retrospective

Only 8% in more than one country Only 16% were population-based

RWD sources were medical records in 60% Median of journal’s impact factor was 4.4 (IQR 3.0, 5.3)
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SCOPE OF THIS PRESENTATION

When and how to use Real-World Data/Evidence for clinical decision making?

v" RWE studies promise higher generalisability than clinical trials,
offering the possibility to generate evidence from RWD of

subpopulations under-represented in clinical trials
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AGENDA ),

When and how to use Real-World Data/Evidence for clinical decision making?

1) Use cases of RWE with direct impact in clinical practice (contextual or therapeutic)
Disease characteristics and survival
Treatment effectiveness (non-comparative and comparative)

2) Use cases of RWE for decision making and indirect impact in clinical practice
Pre-marketing efficacy evaluation
Health technology assessment (HTA)

3) Why good primary data collection and reporting guidelines are so important?
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AGENDA

When and how to use Real-World Data/Evidence for clinical decision making?

1) Use cases of RWE with direct impact in clinical practice (contextual or therapeutic)

Disease characteristics and survival
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DISEASE CHARACTERISTICS AND SURVIVAL X

Epidemiological impact of breakthrough therapies & remaining unmet needs b

What is the real-life benefit of new therapies introduced overtime for the
treatment of patients with breast cancer?

How was this benefit observed by disease subtype?

Which are the unmet needs to prioritise research and development?
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DISEASE CHARACTERISTICS AND SURVIVAL (ESME cohort)

Epidemiological impact of breakthrough therapies & remaining unmet needs

v" Nationwide high-quality RWD may provide indirect evidence of impact of new treatments and areas of unmet need.

Overall survival in the whole cohort according to the Year Of Diagnosis (YOD) Overall survival in the HER2+ subcohort according to the YOD
Based on Kaplan-Meier estimates Based on Kaplan-Meier estimates .
~ 2008 ~ 2010 — 2012 — 2014 — 2016 Median OS (85% CI) (months) — 2008 — 2010 — 2012 — 2014 — 2016 Median OS (35% CI) (months)
YOD _ 2008 — 2011 — 2013 — 2015 by year of diagnosis of MBC YOD _ 5008 — 2011 — 2013 — 2015 by year of diagnosis of MBC
1.00- 2008 36.4 (34.1-38.7) 1.00 2008 39.1 (36.2- 46.5)
2009 37.7 (35.5-40.2) 2009 42.1(38.2-50.8)
2010 35.8(33.8-37.8) 2010 39.4 (35.9-45.4)
0.75- 2011 37.4 (35.5-39.8) 0.75 2011 41.1 (35.5-48.3)

2012 50.8 (45.0-55.5)

2013 58.0(52.0-684) ® Pertuzumab
2014 NR (50.6-NR) <+ T-DM1

2015 NR (55.7-NR)

2016 NR (NR-NR)

2012 40.6 (37.9-43.0)
2013 41.3(39.1-43.3)
2014 39.5 (37.2-42.2)
2015 39.4 (37.5-41.8)
2016 43.9 (41.7-45.9)
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N=20,446 No real-life OS improvements for ER+/HER2- or TNBC subtypes between 2008 and 2016 !! | Selection bhias

REAL wom_n DATA AND DlGlTAl. ONGOLOGY Grinda T., Antoine A, Jacot W, etal. ESMO Open. 2021 Jun;6(3):100114. ESMO WEBINAR SEmES
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DISEASE CHARACTERISTICS AND SURVIVAL X

Disease presentation and prognosis of uncommon entities

How is disease stage at presentation of
early breast invasive lobular carcinoma?

What is the prognosis of these patients compared to other subtypes?
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DISEASE CHARACTERISTICS AND SURVIVAL (BE Cancer Registry)

Disease presentation and prognosis of uncommon entities (e.g. lobular EBC)

Figure 1: Unadjusted overall survival curves
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“Patients with ILC had
higher rates of

T3 stage

(14.0% vs 4.4%, p<0.01),
N3 stage

(5.6% vs 2.9%, p<0.0001)

(...)"
(when compared to NST)

Table 4: Overall survival adjusted for Tand N

]

10092/40784
1942/7092
_ 4552/27504
_ 5565/16225
_ 1133/2770
_ 782/1341
B c091/30623
B 572812696
B 152072078
_ 895/1579

Reference
1.00 (0.95-1.05)

Reference
2.10(2.02-2.19)
2.36 (2.20-2.53)
4.01 (3.70-4.34)

Reference
1.21(1.16-1.26)
1.81(1.70-1.93)
2.51 (2.33-2.70)

Events/Total | Hazard Ratio (95% Cl) m

0.9136

<.0001
<.0001
<.0001

<.0001
<.0001
<.0001

v" Population-based RWD sources may provide important

evidence of disease behaviour of uncommon entities.

Nader-Marta G, Ameye L, Martins-Branco D, Ann Oncol. 2024;35:S336-7

BE, Belgian; eBC, early breast cancer; ILC, invasive lobular carcinoma; NST, breast cancer of no special type; N, node; T, tumour

ESMO WEBINAR SERIES



AGENDA

When and how to use Real-World Data/Evidence for clinical decision making?

1) Use cases of RWE with direct impact in clinical practice (contextual or therapeutic)

Treatment effectiveness (non-comparative and comparative)
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TREATMENT EFFECTIVENESS

Subgroups routinely excluded from clinical trials

What is the value of neoadjuvant chemotherapy for stage | TNBC?

Is pCR of patients with ER-low early breast cancer treated with
neoadjuvant pembrolizumab closer to TNBC or ER-positive disease?

REAI_ WGRLD DATA AND DIGITAI_ ONCOLOGY ER, estrogen-receptor; pCR, pathologic complete response; TNBC, friple-negative breast cancer ESMO WEBINAR SERIE§



TREATMENT EFFECTIVENESS (Netherlands Cancer Registry)

Subgroups routinely excluded from clinical trials (neoadj ChT for stage | TNBC)

Pathologic complete response and

survival after neoadjuvant chemotherapy
in stage | TNBC: a registry-based study

Manon de Graaf, Robbert C.A.M. Gielen, Sara Balduzzi,
Sabine Siesling, Sabine C. Linn & Marleen Kok

Netherlands Cancer Institute, Amsterdam, The Netherlands
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N=1,144
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Overall survival was defined as the time from diagnosis to death from any cause

De Graaf M, Gielen RCAM, Balduzzi S, et al. Ann Oncol 2024;35:5309-348
neoadj ChT, neoadiuvant chematherapy; pCR, pathologic complete response; TNBC, triple-negative breast cancer

pCR

Residual

disease

4-year OS (95% CI)
98% (97% - 99%)

488

93% (90% - 96%)

Median follow-up 3.8 years
(IQR 2.4-5.6 years)

Total no. events = 39 (3.4%)

A 5%

pCR is the only significant variable in
multivariable Cox proportional hazard
model* - p<0.001

* Factors considered: age, grade, cT, histology, platinum,
radiotherapy & capecitabine
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TREATMENT EFFECTIVENESS (Netherlands Cancer Registry)
Subgroups routinely excluded from clinical trials (neoadj ChT for stage | TNBC)

VOLUME 32 - NUMBER 20 - JULY 10 2014

Outcomes by Tumor Subtype and Treatment Pattern in
Women With Small, Node-Negative Breast Cancer:

A Multi-Institutional Study npj | breast cancer Brief communication
Ines Vaz-LuiS, Rebecca A. Ottesen, Melissa E. Hughes, Rizvan Mamet, 1 Published in partnership with the Breast Cancer Research Foundation
Ana M. Gonzalez-Angulo, Beverly Moy, Hope S. Rugo, Richard L. Ther: 8

and Nancy U. Lin

https://doi.org/10.1038/s41523-024-00634-6

Prognosis and treatment outcomes for
patients with stage IA triple-negative
breast cancer

™ Check for updates

Paolo Tarantino ® 2%, Julieta Leone®, Carlos T. Vallejo®, Rachel A. Freedman'2®, Adrienne G. Waks'>%,
Olga Martinez-Saez'**", Ana Garrido-Castro ® 2%, Filipa Lynce ® %, Nabihah Tayob'?, Nancy U. Lin'23,
Sara M. Tolaney ®'2* & Jose P. Leone ® 230

REAL wom_n DATA AND DlGlTAl. ONGOLOGY De Graaf M, Gielen RCAM, Balduzzi S, et al. Ann Oncol 2024;35:S309-348 ESMO WEBINAR SEmES
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TREATMENT EFFECTIVENESS (PROMENADE cohort)

Subgroups routinely excluded from clinical trials (pembrolizumab for ER-low EBC)

PROMENADE: PembROlizuMab for early ER-low/HER2-

80 -
ER-low breast caNcer, reAlworlD frEnch cohort

70 TNBC F. Cherifi!, L. Cabel?, C. Bousrih3, E. Volant?, F. Dalenc®, B. Mery?,
M. Auvray Kuentz’, M. Alexandre®, L. Benistant®, M. Leheurteur®,
C. Bailleux'', M. Debled'?, J-S. Frenel'3, D. Loirat?, F.C. Bidard?, S. ‘
60 Aho', A. Glenet's, J.T.L. Ribeiro Mourato?, F. Christy'®, G. Emile’
o 90
) ~ RCB nw)
w 40
(@)
2
3% 30 ER+ 0 85 (75 %)
20
1 9 (8 %)
10
o
. Y Y 2 12 (11 %)
m PROMENADE EKEYNOTE-522 mKEYNOTE 756 3 7 (6 cy )
0
Data are not intended to be directly comparative
N=114 Progressive disease 1(1 %)
REAL WORLD DATA AND DIGITAL ONCOLOGY  CherfiF, Cabel L, Bousrin G, et al. Am Orcol 2024;35:5%09-348 ESMO WEBINAR SERIES
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TREATMENT EFFECTIVENESS

Interventions with inconsistent or weak magnitude of benefit in RCTs

What is the value of surgery of primary tumour in de novo MBC?

Is effectiveness of everolimus clinically relevant after CDK4/6i?

REAL WORLD DATA AND DIGITAL ONCOLOGY cosi coke/sinnistors; MBC, metastatc breast cancer ESMO WEBINAR SERIES



TREATMENT EFFECTIVENESS (Belgian Cancer Registry)

Interventions with inconsistent benefit in RCTs (surgery of 1ary tumour in dnMBC)

Women diagnosed with de novo metastatic
breast cancer between 2010 and 2014,
identified from the Belgian Cancer Registry
n=2627 patients

Did not receive any systemic treatment:
n=228 patients

Received systemic treatment:
n=2399 patients

Died or lost to follow-up <9 months
after diagnosis: n=414 patients

9-month landmark analysis

Alive 29 months after
diagnosis: n=1985 patients

Propensity score matching analysis

Alive 29 months after
diagnosis: n=954 patients

No Surgery group:
n=1451 patients

n=241 patients

n=534 patients

Surgery group: } ‘ .

No Surgery group:
n=477 patients

n=224 patients

Surgery group: \
n=477 patients n

N=1,985

{ Late Surgery:
n=253 patients

{ Upfront Surgery: |

. Late Surgery:
1 n=293 patients |

* Upfront Surgery:

a Surgery: mOS of 60.1

=~ :
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Fig. 2 Kaplan-Meier curves for overall survival in (A) all patients,
(B) patients with estrogen receptor (ER)-positive/HER2-negative
subtypes, (C) HER2-positive subtype and (D) triple-negative subtype
(TNBC); CT: confidence interval: HR: hazard ratio — adjusted for age.
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TREATMENT EFFECTIVENESS (EVERGREEN cohort)

Interventions with weak magnitude of benefitin RCTs (everolimus for MBC)

Fig. 1. Kaplan-Meier curves for rwPFS (N=207, 202 events) Table 3. Multivariable analysis for rwPFS (N=190, 185 events)

1001 Treatment Events/Total Median (95% CI) HR (95% Cl) Time-Point KM Est (95% ClI) Treatment Everolimus 132/137 0.68 (0.47-0.99)
Everolimus 145/150 5.0(4.3-69) 0.75(0.55-1.02) (33 gigmonlhs_wythout_adj_usl 71.3 (64.5-78.9:/0) ET alone 53/53 e

90 - onths_without_adjust 42.7 (35.4-51.4%)

9 PFSMonths_without_adjust 24.4 (18.4-32.4%) Age Class <50 37/37 Reference

- —_— ET alone 57/57 4.3(3.0-6.0 Reference g iignxmz:xnnm::gjzz: gg? :gﬁggg::; (years) 50-69 101/104 0.63 (0.42-0.95)

9 PFSMonths_without_adjust 17.5 (10.0-30.8%) =270 47/49 0.65 (0.40-1.04)
70 - ECOGPS 0-1 173/177 Reference

2-3 12/13 1.12(0.57-2.19)
60 =Y ) ) Charlson score 6 141/146 Reference

* - EVE-cohort: 9 sites where EVE was SoC after CDK4/6i 7 32/32 1.02 (0.67-1.57)

g- 0 ETa-cohort: 5 sites where EVE was not SoC after CDK4/6i >8 12/12 088 (0.48-1.62)
De novo vs De novo 55/57 Reference

40 recurrent ABC Recurrent 130/133 0.86(0.61-1.22)
Histological Ductal 129/132 Reference

30 4 . . subtype Lobular 29/30 1.20(0.78-1.86)

I Information bias Mixed/other 27/28 0.65 (0.42-1.01)
20 1 Progesterone Negative 56/56 Reference

receptor Positive 129/134 0.91(0.65-1.28)
b Metastatic Bone only 59/61 Reference

0 sites Visceral/CNS 126/129 1.16 (0.83-1.62)
0 é 1'2 1'8 2I4 3'0 316 Number of 1 121/125 Reference

prior lines >1 64/65 1.65(1.17-2.34)
PFSMonths Duration of <12 months 81/84 Reference

Patients-at-Risk CDK4/6i >12 months 104/106 0.83(0.60-1.15)

Everolimus 150 64 23 17 n 8 3
ETalone 57 21 5 3 L 0 oo Caspertie Oncelogy rous performance sstu, 21 endocne nersmy #o, st e
REAL WORLD DATA AND DIGITAL ONCOLOGY Lobo-Martins SL, Martins-Branco D, Aftimos P, et al. Ann Oncol. 2024;35:S365-366 ESMO WEBINAR SERIES

EVE, everolimus; ETa, endocrine therapy alone; RCTs, randomised controlled trials; rwPFS, real-world progression-free survival
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AGENDA

When and how to use Real-World Data/Evidence for clinical decision making?

2) Use cases of RWE for decision making and indirect impact in clinical practice
Pre-marketing efficacy evaluation

Health technology assessment (HTA)
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USE OF RWE FOR PRE-MARKETING EVALUATION

Reported use of RWE for clinical efficacy evaluation in EPARS

Regulatory setting RWE reported in EPAR EPAR section RWE role

RWE for clinical efficacy evaluation

was reported in the EPAR of @
16 of 75 indications (21.3%)

RWE'’s role was “supportive’ in
12 of 16 (75.0%) indications

Kkl Extension of Indication

REAL WORLD DATA AND DlﬁlTAl. ONGOLUGY Derksen JWG, Martins-Branco D, Valachis A, et al. ESMO RWD&DO 2024;4:100039 ESMO WEBINAR SERIES

PAR, European Public Assessment Report



USE OF RWE FOR PRE-MARKETING EVALUATION

Case scenario of supportive complementary study - trastuzumab deruxtecan

B Progressi(.);:free Survival mPFS 16,4 months A .
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THE VALUE OF RWE IN HEALTH ECONOMICS FOR HTA

RWE to support reimbursement decision making

Figure 1: Opinions of RWE use across ten European countries
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AGENDA

When and how to use Real-World Data/Evidence for clinical decision making?

3) Why good primary data collection and reporting guidelines are so important?
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RWE QUALITY STANDARDS

3 main dimensions

ESMO RWDD WG developed ESMO GROW
To test the compliance with the checklist

Reporting

are the
dimensions more
easily assessed
in @ manuscript

Reporting quality m :
& study quality _ qua“ty

Study quality Da;e:jgﬁtt;/rce %J’I’Z’I’T:’j
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ESMO Guidance for Reporting
Oncology real-World Evidence

. . . e . o
The first reporting guidance specifically developed for oncology RWE studies
e e
« Detailed list of recommendations for authors and reviewers Ci B Aeting EJ 1 I | ==t ey
of RWE pUb"CﬁtiOﬂS. ?Gné:g‘lnt;)gy real-World evidence 8 | “ﬁgz'p"f‘fi’ D,_m;::;;kam
 Broad Scope: Descriptive to Analytical e o

» Addresses new treatments, molecular-based
epidemiology, oncology-specific variables, and tech-
based RWE research (Al, machine learning)

Not reported

» Facilitates harmonised interpretation by all stakeholders

- Related Materials: Online Tool, Checklist, Flowchart = -

ESM% ﬁnovl Castelo-Branco L., PellatA., Martins-Branco D., et al. ESMO Guidance for Reporting Oncology real-World evidence (GROW). Ann Oncol. 2023;34(12):1097-1112.
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CONCLUSION - take home messages X

v RWE promises higher generalisability than clinical trials, mainly for subpopulations under-represented in RCTs

v RWE can inform about disease presentation, prognostic factors, treatment effectiveness, and survival,
playing an important role for clinical practice whenever clinical trial evidence is not available to guide decision

v" Good quality RWE may have an important role in health policy for regulatory and health technology assessment,
iImproving access to innovative treatments in clinical practice

v" Reporting quality is essential for critical appraisal of RWE studies, providing full understanding of main study
limitations and strategies to mitigate them — ESMO-GROW checklist

v The ESMO-RWDD WG aims to develop a specific tool for assessment of oncology real-world evidence study
quality AND to define a minimum clinical dataset for primary data collection

v" There is a need for optimising RWD collection for primary and secondary use, generating good quality RWE for
supporting clinical practice decision making
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REAL WORLD DATA AND DIGITAL ONCOLOGY

Thank you for your attention

Contacts ESMO
European Society for Medical Oncology
Via Ginevra 4, CH-6900 Lugano
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COMMON BIASES IN
REAL-WORLD EVIDENCE STUDIES,
AND HOW TO MITIGATE THEM?
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INTRODUCTION
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SCOPE OF THIS PRESENTATION

s not to provide an exhaustive review of all the biases that can occur when analyzing real-world data (RWD)
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SCOPE OF THIS PRESENTATION

s not to provide an exhaustive review of all the biases that can occur when analyzing real-world data (RWD)

But rather to detail the main biases that arise when trying to answer the question of (comparative) analysis of the

efficacy of treatments used in clinical routine
= Assessing “effectiveness” or “real-world efficacy”

= Atypical situations in oncology
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ATYPICAL SITUATIONS IN ONCOLOGY

Effectiveness assessment based on RWD

1. Rare cancers (or subtypes) defined by a molecule defect targeted by a new treatment

+ Randomized Controlled Trial (RCT) difficult to conduct within a reasonable time frame
= Single Arm uncontrolled Trial (SAT)

Unable to assess relative treatment benefit
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ATYPICAL SITUATIONS IN ONCOLOGY

Effectiveness assessment based on RWD

1. Rare cancers (or subtypes) defined by a molecule defect targeted by a new treatment
+ Randomized Controlled Trial (RCT) difficult to conduct within a reasonable time frame
= Single Arm uncontrolled Trial (SAT)
Unable to assess relative treatment benefit

= Opportunity to provide an external control arm from RWD to assess the effectiveness of the

experimental treatment
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ATYPICAL SITUATIONS IN ONCOLOGY (#2)

Effectiveness assessment based on RWD

2. RCT completed but questions unresolved:

Inappropriate control arm

Low power for definitive endpoint (overall survival)

Short duration of follow-up

Inconclusive RCT in subgroups of interest
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ATYPICAL SITUATIONS IN ONCOLOGY (#2)

Effectiveness assessment based on RWD

2. RCT completed but questions unresolved:

Inappropriate control arm

Low power for definitive endpoint (overall survival)

Short duration of follow-up

Inconclusive RCT in subgroups of interest

= Opportunity to use RWD to assess the effectiveness of comparative treatments
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SCOPE OF THIS PRESENTATION ) 4

To detail the main biases that arise when trying to answer the question of (comparative) analysis of the efficacy

of treatments used in clinical routine
= Assessing “effectiveness” or “real-world efficacy”

= Atypical situations

% In this context, appropriate methods to mitigate biases require large cohorts of RWD, based on EHR, with a high level of

quality and granularity (baseline patient characteristics, outcomes...): ESME (France) ', FLATIRON (USA) ...

1. Pérol D et al. BMJ open 2019. 2. Flatiron Health: Real-world evidence, 2023. https:/flatiron.com/real-world-evidence/ EHR: Electronic Health Records

REAL WORLD DATA AND DIGITAL ONCOLOGY ESMO WEBINAR SERIES


https://flatiron.com/real-world-evidence/

MAIN BIASES ASSOCIATED WITH
THE USE OF RWD
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CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT
Randomised Controlled Trial (RCT) (#1)

© 0000 tment A
PERTR convay

© 0 o
L

==0
=0
==0

§
%"P

==0

Randomisation R
l{}\ TreatmentsA + B
(experimental)

==0
==0
=30
==0
==0
==0

An appropriate and a priori-defined protocol:

« Eligibility criteria explicitly stated: patient population in the experimental and control groups is similar
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CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT
Randomised Controlled Trial (RCT) (#1)

ih Aninon Treatment A
‘{PIH]%“"“{P (control)

(o] (o]
A

==0
=30
==0

§
%"P

=0

Randomisation

I{OP Treatments A + B
(experimental)

==0
==0
=30
==0
=0
==0

* An appropriate and a priori-defined protocol:

« Eligibility criteria explicitly stated: patient population in the experimental and control groups is similar

» For each patient, time zero of follow-up (T,) = time when 3 things happen: eligibility criteria are met; treatment
strategies are assigned; and study outcomes (survival) begin to be counted

1. Hernan MA & Robins JM, Am J Epidemiol. 2016
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CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT
Randomised Controlled Trial (RCT) (#1)
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* An appropriate and a priori-defined protocol:

« Eligibility criteria explicitly stated: patient population in the experimental and control groups is similar

» For each patient, time zero of follow-up (T,) = time when 3 things happen: eligibility criteria are met; treatment
strategies are assigned; and study outcomes (survival) begin to be counted

* The frequency and methods of tumor assessment are standardized (e.g., tumor progression - RECIST criteria)

1. Hernan MA & Robins JM, Am J Epidemiol. 2016
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CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT
Randomised Controlled Trial (RCT) (#1)
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* An appropriate and a priori-defined protocol:

« Eligibility criteria explicitly stated: patient population in the experimental and control groups is similar

» For each patient, time zero of follow-up (T,) = time when 3 things happen: eligibility criteria are met; treatment
strategies are assigned; and study outcomes (survival) begin to be counted

* The frequency and methods of tumor assessment are standardized (e.g., tumor progression - RECIST criteria)

* Few or no missing data

1. Hernan MA & Robins JM, Am J Epidemiol. 2016
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CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT
Randomised Controlled Trial (RCT) (#2)

DDDDDD

@@@@W‘{PW%W% A Average causal ef fect AE =

Randomisation o O E(armA)-E(arms A + B)

* Randomization ensures initial comparability at T

= difference in outcomes observed = average causal effect
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CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT
Real-World Data (RWD) (#1)

Treatment A

2}\ (control)
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q}\ (experimental)
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==0
==0

No a priori-defined protocol:

- Eligibility criteria not explicitly stated: characteristics of the patients in experimental group may be different from
those in control group - Selection bias
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CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT
Real-World Data (RWD) (#1)

Treatment A
(control)

==0
=30
=30
==0
=30
==0
=0

3}
3§

==0
==0

Treatments A + B
(experimental)

==0
==0
==0
=30
=30
==0
=30
==0
=30

* No a priori-defined protocol:

- Eligibility criteria not explicitly stated: characteristics of the patients in experimental group may be different from
those in control group - Selection bias

* Misalignment of eligibility criteria and treatment assignment - Immortal time bias

REAL WORLD DATA AND DIGITAL ONCOLOGY ESMO WEBINAR SERIES



IMMORTAL TIME BIAS Vv

Observational study (RWD)

If “immortal time” is misclassified into the

“treated” group or excluded from analysis,
This bias occurs when there is a period during follow-up / bias is induced

where the outcome cannot occur because of study design

(e.g., the period between cohort entry and exposure) immortal time  treatment

Event
Treatment * (death)

|
| Undue Start of
|
|

Happens when researchers assign patients to treated T, = date of diagnosis
L . . (cohort entry)
group by using information that is observed after the

|
participant enters the study (after time-zero) :
|

No

——— Event
treatment | ° (death)

Source: Lévesque LE et al. BMJ 2010.
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CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT
Real-World Data (RWD) (#1)

Treatment A
(control)
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(experimental)
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=30
=30
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==0
=30

* No a priori-defined protocol:

- Eligibility criteria not explicitly stated: characteristics of the patients in experimental group may be different from
those in control group - Selection bias

* Misalignment of eligibility criteria and treatment assignment = Immortal time bias

* The frequency and methods of tumor assessment are not standardized - Information bias (measurement bias in
interval-censored outcomes)

1. Siu DHW JCO Precis Oncol 2024.
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CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT
Real-World Data (RWD) (#1)

Treatment A
(control)

==0
=30
=30
==0
=30
==0
=30

3§
§

==0
==0

Treatments A + B
(experimental)

==0
==0
==0
=30
=30
==0
=30
==0
=30

* No a priori-defined protocol:

- Eligibility criteria not explicitly stated: characteristics of the patients in experimental group may be different from
those in control group - Selection bias

* Misalignment of eligibility criteria and treatment assignment = Immortal time bias

* The frequency and methods of tumor assessment are not standardized - Information bias (measurement bias in
interval-censored outcomes)

« RWD studies are more likely to have missing data compared with clinical trials *

1. Siu DHW JCO Precis Oncol 2024.
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CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT
Real-World Data (RWD) (#2)

==o
==0

T LI T R L L Treatment A
IHI 9[? q}\%\ 'ZLP["I%\ (control)
O O 00 OO OO0 O

PIRPRRTR G Teamensare

« Absence of randomisation to ensure equivalent groups for comparison:

==0

* Heterogeneity of compared groups = Confusion bias

* In routine clinical practice, doctors do not prescribe treatments "at random": implicit or explicit allocation based on patient risk
(co-factors) = “confusion” between co-factor effect and treatment effect

« For example, if more ECOG PS 0-1 patients are assigned to the experimental group than to control, and if PS is independently
more likely to be associated with survival, the new treatment may falsely appear to be beneficial
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CONFOUNDING BY INDICATION
Observational study (RWD)

1

Treatment B S S\ (Y Sy ]

Treatment C

Treatments A, B, C... are in fact prescribed preferentially to patients with a +/- high risk of developing the event
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CAUSAL INFERENCE FROM OBSERVATIONAL DATA

Summary

 In RWD studies, difference in outcomes naively observed is subject to biases:
. Selection bias

. . O O
- Immortal time bias I"l I“l

00 0O0OO0O0O0

’%F["“{FZFIH"%F[""{P Average causal ef fect AE +
0000 0 0 0 0 E(arm A)—E(arms A + B)
TR

- Information bias o o
- Missing data IHI [“]

- Confounding bias...

= How to mitigate them?
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HOW TO MITIGATE BIASES?
TARGET TRIAL EMULATION
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THE TARGET TRIAL

Views 22,975 Citations 17 = Altmetric 111

JAMA Guide to Statistics and Methods
December 12, 2022

Target Trial Emulation

A Framework for Causal Inference From
Observational Data

Miguel A. Herndn, MD, DrPH'; Wei Wang, PhD?; David E. Leaf, MD, MMSc3

» Author Affiliations

JAMA. 2022,;328(24):2446-2447. doi:10.1001/jama.2022.21383

||\|N HARVARD

TH.CHAN
CAU SALab uuuuuuuuuuuuuuuuuuuu

A Center to Learn What Works
Sources: Hernan MA, Robins JM. Causal Inference: What If. Boca Raton. Chapman & Hall/CRC. 2020; Hernan MA et al, JAMA 2022
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THE TARGET TRIAL

A practical way to ask a causal question in non-interventional studies is to
specify a protocol of the target trial

= The target trial: the hypothetical randomized trial that we would like to conduct to

answer a causal question

||\|N HARVARD

TH.CHAN
CAU SALab uuuuuuuuuuuuuuuuuuuu

A Center to Learn What Works
Sources: Hernan MA, Robins JM. Causal Inference: What If. Boca Raton. Chapman & Hall/CRC. 2020; Hernan MA et al, JAMA 2022
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THE TARGET TRIAL

A practical way to ask a causal question in non-interventional studies is to
specify a protocol of the target trial
= The target trial: the hypothetical randomized trial that we would like to conduct to

answer a causal question
= Why do we need to explicitly emulate a target trial for causal inference from
observational data?

= because not doing so leads to bias

||\|N HARVARD

TH.CHAN
CAU SALab uuuuuuuuuuuuuuuuuu

A Center to Learn What Works

Sources: Hernan MA, Robins JM. Causal Inference: What If. Boca Raton. Chapman & Hall/CRC. 2020; Hernan MA et al, JAMA 2022
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TARGET TRIAL EMULATION

Key concepts

Explicitly emulating the target trial eliminates self-inflicted injuries:

 Selection bias with an explicit application (keys elements) of the protocol to observational data

Sources: Hernan MA & Robins JM, Am J Epidemiol. 2016; Hernan MA et al, JAMA 2022
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TARGET TRIAL EMULATION

Key concepts

Explicitly emulating the target trial eliminates self-inflicted injuries:

 Selection bias with an explicit application (keys elements) of the protocol to observational data
» Immortal time-bias with a specification of time zero:

. T, must be synchronized with determination of eligibility and assignment of treatment strategies

Sources: Hernan MA & Robins JM, Am J Epidemiol. 2016; Hernan MA et al, JAMA 2022

REAL WORLD DATA AND DIGITAL ONCOLOGY ESMO WEBINAR SERIES



TARGET TRIAL EMULATION

Key concepts

Explicitly emulating the target trial eliminates self-inflicted injuries:

 Selection bias with an explicit application (keys elements) of the protocol to observational data
» Immortal time-bias with a specification of time zero:
. T, must be synchronized with determination of eligibility and assignment of treatment strategies

« Information bias by ensuring similarity in the extent and quality of data capture between the arms

Sources: Hernan MA & Robins JM, Am J Epidemiol. 2016; Hernan MA et al, JAMA 2022
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TARGET TRIAL EMULATION VW

Key concepts

Explicitly emulating the target trial eliminates self-inflicted injuries:

 Selection bias with an explicit application (keys elements) of the protocol to observational data
» Immortal time-bias with a specification of time zero:

. T, must be synchronized with determination of eligibility and assignment of treatment strategies
« Information bias by ensuring similarity in the extent and quality of data capture between the arms

« Multiple imputation strategies can be applied to handle missing data

Sources: Hernan MA & Robins JM, Am J Epidemiol. 2016; Hernan MA et al, JAMA 2022
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TARGET TRIAL EMULATION VW

Key concepts

Explicitly emulating the target trial eliminates self-inflicted injuries:

 Selection bias with an explicit application (keys elements) of the protocol to observational data
» Immortal time-bias with a specification of time zero:
. T, must be synchronized with determination of eligibility and assignment of treatment strategies
« Information bias by ensuring similarity in the extent and quality of data capture between the arms
« Multiple imputation strategies can be applied to handle missing data

In addition, emulation requires statistical adjustment for confounding due to the lack of randomisation

Sources: Hernan MA & Robins JM, Am J Epidemiol. 2016; Hernan MA et al, JAMA 2022
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TARGET TRIAL EMULATION FRAMEWORK

B

4
%
%
%

Applying key methodological & design components of RCT to observational data

Step 1
Designing the target (ideal) trial protocol: explicit
description of key elements, a priori

Eligibility criteria

Treatment strategies

Treatment assignment: randomization
Follow-up

Outcome(s)

Causal contrast(s) (ITT and/or PP)
Analysis plan

I NI I NE A A

Step 2

Conducting/Emulating the target trial: explicit
application of the protocol to observational data

U
a
EI

I S R W

Eligibility criteria

Treatment strategies

Treatment assignment: hypothetical randomization
process (confounding adjustment)

Follow-up

Outcome(s)

Causal contrast(s) (ITT and/or PP)

Analysis plan

Sources: Hernan MA & Robins JM, Am J Epidemiol. 2016; Hernan MA et al, JAMA 2022
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ILLUSTRATION

ESME Metastatic Breast Cancer (MBC)

JNCI: Journalof the National Cancer Institute, 2023, 115(8), 571-980

https://doi.org/10.1093/jnci djad 092
Advance Access Publication Date May 23,2023

OXFORD Article

Target trial emulation to assess real-world efficacy in the
Epidemiological Strategy and Medical Economics
metastatic breast cancer cohort

Alison Antoine (8, MSc,** David Pérol (), MD,"* Mathieu Robain, MD, PhD,* Suzette Delaloge (§), MD,*
Christine Lasset ([5), MD, PhD,** Youenn Drouet, PhD**

*Clinical Research and Biostatistics Department, Centre Léon Bérard, Lyon, France

FUMR CNRS 5558 LERE, Clsude Bernard Lyon 1 University, Villeurbanne, France

“Data Direction, UNICANCER, Paris, France

*Department of Cancer Medicine, Gustave Roussy, Villejuif, France

*Prevention & Public Health Department, Centre Léon Bérard, Lyon, Prance

“Carrespondence to: David Péml, MD, Clinical Research and Biostatistics Department, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
{e-mnail: david perok@lyan unicancer £,

Abstract

Background: Real-world data studies usually consider biases related to measured confounders. We emulate a target trial implement-
ing study design principles of randomized trials to observational studies; controlling biases related to selection, espedally immartal
time; and measured confounders.

thods: This comp ive analysis emulating a randomized dinical trial compared overall survival in patients with HER2-
negative metastatic breast cancer (MBC), receiving as first-line treatment, either paclitaxel alone or combined to bevacizumab. We
used data from 5538 patients extracted from the Epidemiological Strategy and Medical Economics-MBC cohaort to emulate a target
trial using advanced statistical adjustment techniques including stabilized inverse-probability weighting and G-computation, deal-
ing with missing data with multiple imputation, and performing a quantitative bias analysis for residual bias due to unmeasured
confounders
Results: Emulation led to 3211 eligible patients, and overall survival estimates achieved with advanced statistical methods favored
the combination therapy. Real-world effect sizes were dose to that assessed in the existing E2100 mndomized clinical trial (hazard
ratio = 0.88, P = .16), but the increased sample size allowed to achieve a higher level of precision in real-world estimates (ie, reduced
confidence intervals). Quantitative bias analysis confirmed the robustness of the results with respect to potential unmeasured con-
founding.
Conclusion: Target trial emulation with advanced statistical adjustment techniques is a promising approach to investigate long-
term impact of innovative therapies in the French Epidemiological Strategy and Medical Economics-MBC cohort while minimizing
biases and provides opportunities for comparative efficacy through the synthetic control arms provided.
Database registration: dinicaltrials. gov Identifier NCT03275311.

Source: Antoine A et al. J Natl Cancer Inst. 2023.
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32 598

Selected patients

Inclusion criteria
o Male/Female
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o MSC* managementin a CCC since
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ILLUSTRATION (#2)
ESME MBC : PALOMA-3 TRIAL

N=32,598

N =6,400

N=1,139

All patients in ESME MBC cohort
diagnosed between 2008 and 2021
N = 32,598

PALOMA-3 RWD

Women with HR+/HER2- MBC who have
progressed after prior endocrine therapy
and who received Fulvestrant +/-
Palbociclib as first line or second line
treatment
N = 6,400

Do not received Fulvestrant +/- Palbociclib (n = 26, 198) ‘

Emulated population
N=1,139

HR-negative (n = 102)

HER2-positive (n = 240)

Male patients (n=32)

ECOG PS 2-4 (n = 1,340)

Brain metastases (n =76)

Received other CDK 4/6i during the same treatment line as FUL +/- PAL
(n=267)

Prior CDK 4/6i or Fulvestrant for MBC (n = 482)

Received unknown drugs (blinded trials) during the same treatment line
as FUL +/- PAL (n = 108)

Prior Everolimus or anti-mTOR for MBC (n = 168)

Prior (neo)adjuvant anti-mTOR (n = 12)

De novo MBC, or have not received Al, or Metastatic diagnosis >12 M
from the last (neo)adjuvant hormonal therapy, or who progressed >1
month after the end of m1L hormonal therapy, or who received
(neo)adjuvant hormonal therapy without end date (n = 1,681)

Prior RT for MBC within 2 wks. (n = 61)

Major surgery within the last 2 wks. (n=5)

Other malignancy within the last 3 yrs. (n=11)

Initiated FUL +/- PAL as m1L before or more than 4 months after the
metastatic diagnosis (n = 39)

Treatment initiation <= 2015 (n =635)

Antoine A et al. Eur J Cancer 2024. In press. FUWESTRA:: ;:: LBOCIEHE FUL:ES;LANT
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ILLUSTRATION (#3)
ESME Metastatic Breast Cancer (MBC)

ESME CSM RW database 1. Selecting the emulated population
Experimental | Contro v Selection bias (by design)
treatment ¥ treatment
"""""""""""""""""""""""""""" v" Immortality bias (by design)
] : v Information bias (by design)...
Emulated Emulated : :
experimental control X Confusion bias
arm arm

2. Statistical analysis: estimating the treatment effect

v~ Confusion bias (adjustment)
Causal inference
v’ SIPTW
v GC
Vo

X Residual confusion?

SIPTW: Stabilized inverse probability of treatment weighting; GC: g-computation
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STATISTICAL ADJUSMENT METHODS

= Cox’s multivariate regression
= Stabilized Inverse Probability of Treatment Weighting (SIPTW)

=  G-computation
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STATISTICAL ADJUSMENT METHODS (#2)

- Stabilized Inverse Probability of Treatment Weighting (SIPTW)

Weighting method based on the propensity score (PS)

PS: defined as the probability of receiving a specific treatment conditional on its observed baseline characteristics
The PSs of patients in the experimental arm are weighted against those in the control arm so that baseline

characteristics are balanced

1. Robins, Hernan & Brumback Epidemiology 2000.
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STATISTICAL ADJUSMENT METHODS (#3)

« G-computation 12

Multistage process, modelling outcome as a function of treatment and adjustment covariates under different

exposure scenarios

1. Snowden JM, Rose S & Mortimer KM Am J Epidemiol 2011. 2. Chetton A et al. Sci Rep 2020.
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PALOMA-3: TRIAL EMULATION USING ESME-MBC COHORT

Original trial

Crude effect

Adjusted effect

Sensitivity analyses

Model

PALOMA-3 RCT

Univariable Cox (Naive pop)

Univariable Cox (Emulated pop)

SIPTW Cox (Emulated pop)

Multivariable Cox (Emulated pop)

PSOW Cox (Emulated pop)

G-Computation (Emulated pop)

Antoine A. et al. Eur J Cancer 2024. In Press.
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Hazard ratio (95% ClI)

2 4

Hazard Ratio (95% CI)

0.81 (0.64-1.03); p = 0.09

0.76 (0.69-0.83)

0.72 (0.62-0.85)

0.81 (0.69-0.95)

0.80 (0.68-0.95)

0.82 (0.65-1.02)

0.82 (0.70-0.96)

Sample size**

N =521

N=3,752

N=1139

N = 1,139 (1,138)

N=1,139

N = 1,139 (516)

N=1,139
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Percentage of women alive (%)

APPLICATION

Survival following adjuvant trastuzumab-based treatment among older
patients with HER2-positive early invasive breast cancer: A national
population-based cohort study using routine data

Melissa Ruth Gannon*”*, David Dodwell ©, Katie Miller *-”, Jibby Medina *-", Karen Clements °,

. a . a,b . a,b No trastuzumab  Trastuzumab Interaction Haz. ratio
Kieran Horgan P, Min Hae Pa.rk a, ) DaV]d A.lan Cl‘omwe]_l a, Subgroup Dths/N Dths/N p-value (95% Cl)
Age decades: |
50-59 yrs 29/587 7512226 0.431 —_————— 0.57 (0.34, 0.95)
60-69 yrs 98/913 113/1952 R I 0.43 (0.32, 0.59)
70-79 yrs 231/1010 122/970 —— | 0.47 (0.37, 0.61)
80+ yrs 383/911 28/90 —l—Q—l— 0.68 (042, 1.11)
1
. )
Age at diagnosis: 50-69 years Age at diagnosis: 70+ years gc" 500/2760 28714744 0.822 ° : 0.57 (0.45,0.72)
100% 100% - 1 126/416 36/395 * 0.52 (0.25, 1.07)
2+ 106/245 15/99 *— | 0.43 (0.21, 0.89)
90% - 90% - i . |
. |
o/ | = o/, | Fit 430/2453 263/4478 0.923 — | 0.54 (0.43, 0.69)
80% ) 80% Mild frailty 113/450 41/492 4 - t 0.61(0.34, 1.10)
70% - 2 70% - Mod-severe frailty 198/518 34/268 ¢ T 0.55 (0.30, 1.02)
g T stage: : I
60% - 60% - T 238/1923 102/2954 0.773 — e | 0.61(0.42, 0.88)
§ T 455/1385 2102113 —— 0.53 (0.39, 0.71)
50% S 50%- T3 48/113 26/171 *~— | 0.46 (0.22, 0.95)
-— 1
5 ! I
o/, | © 0/, N stage:
40% > 40% NO 430/2607 160/3633 SR | 0.59 (0.42, 0.81)
30% E 30% N+ 311/814 178/1605 0.535 —_— | 0.51 (0.37, 0.69)
g Grade: ; I
20% a 20%- G1 17/232 4/100 0.212 L o > 1.04 (0.30, 3.60)
G2 243/1631 91/1925 —— 0.71 (0.46, 1.09)
10% == Tresliiomab 10% == Traskizomab G3 481/1558 243/3213 — | 0.49 (0.38, 0.63)
1
0% = No trastuzumab 0% - = No trastuzumab HR positive: ' I
T T T T T T T T T T T T T T No/Unknown 296/902 157/1637 0.853 —_— 0.57 (0.40, 0.82)
0 1 2 3 4 5 6 0 1 2 3 4 5 6 Yes 445/2519 181/3601 —— I 0.55 (0.42, 0.72)
Time from landmark (Years Time from landmark (Years . |
( ) ( ) Overall — I 0.56 (0.45, 0.70)
T T T T T 1
02 04 06 08 101214
Source : MR Gannon et al. Eur J Cancer 2024. Favours:  Trastuzumab  No Trastuzumab
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PERSPECTIVE: EXTERNAL CONTROL IN SAT

FIRST-NEC CLINICAL TRIAL (NCT06393816) in large-cell neuroendocrine lung cancer patients

Single-Arm Phase Il Trial with RW external control (ESME lung cancer cohort)

- Emulation of a target trial to assess the efficacy of standard chemotherapy (CT) = immune checkpoint inhibitor (ICI)
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CT alone

SAT: Single Arm Trial
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Endpoints:
PFS and OS
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B -

CONCLUSION ) 4

 Trial emulation combined with appropriate adjustment can mitigate biases in RWD

Implementation of eligibility criteria is a critical factor, like adjustment, in limiting biases in RWD studies

Promising in atypical situations: external control in SAT, RCTs subgroups issues, long-term OS measurement. ..
 Constraints and limitations:

Emulation requires large databases with high quality & granularity

Emulation of placebo and double-blind assignment is not possible

Difficulty of emulating contemporaneous arms in some situations

Potential residual bias: use of sensitivity analyses (simulation, negative controls)
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Thank you for your attention

Contacts ESMO
European Society for Medical Oncology
Via Ginevra 4, CH-6900 Lugano

T.+41(0)91 9731900
esmo@esmo.org
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