CRACKING THE CODE OF REAL-WORLD DATA REPORTING AND INTERPRETATION IN ONCOLOGY

Karijn Suijkerbuijk and Antonis Valachis

Co-Chairs

INTRODUCTION

Learning Objectives

- To become better equipped for the critical analysis of real-world data and their proper interpretation for clinical practice.
- To familiarize with commonly used concepts and definitions among real-world evidence studies in oncology.
- . To recognize common biases in real-world evidence studies and how they can impact the interpretation of study results.
- To understand the importance and benefits of structured reporting of real-world data.

INTRODUCTION

Programme

23 October 2024	
5 min	Welcome and introduction
	Karijn Suijkerbuijk and Antonis Valachis
20 min	Interpreting real-world data in clinical practice: what clinicians need to know and how reporting guidelines can be helpful
	Diogo Martins-Branco
20 min	Common biases in real-world evidence studies, and how to mitigate them?
	David Perol
15 min	Live Q&A and Discussion
	All speakers

Karijn Suijkerbuijk

Chair UMC Utrecht

Antonis Valachis

Chair Department of Oncology Örebro University Hospital

Diogo Martins-Branco

Speaker European Society for Medical Oncology

David Perol Speaker University Claude Bernard Lyon I

REAL WORLD DATA AND DIGITAL ONCOLOGY

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

INTERPRETING REAL-WORLD DATA IN CLINICAL PRACTICE

What clinicians need to know and how reporting guidelines can be helpful

Diogo Martins-Branco, MD MSc

ESMO Scientific & Medical Division

diogo.martins-branco@esmo.org

Diogo Martins-Branco

Personal financial interests: Full time employment at ESMO since September 1, 2023
Institutional financial interests (funding to *Institut Jules Bordet* as medical research fellow/medical advisor): Eli Lilly, F. Hoffmann-La Roche Ltd., and Novartis (before September 1, 2023)
Non-financial interest: Board member of *Associação de Investigação e Cuidados de Suporte em Oncologia*

The content of this presentation and opinions expressed do not reflect formal positions of ESMO.

HOW OFTEN IN YOUR CLINICS DO YOU HAVE TO TREAT PATIENTS FOR WHOM YOU DON'T HAVE **CLINICAL TRIAL EVIDENCE TO FULLY GUIDE YOUR DECISION?**

REAL WORLD DATA AND DIGITAL ONCOLOGY

patients with cancer participate in therapeutic clinical trials

Unger JM, Shulman LN, Facktor MA, et al. J Clin Oncol. 2024 Jun 20;42(18):2139-2148

patients with cancer participate in therapeutic clinical trials

RCTs, randomised controlled trials SR&MAs, systematic review with meta-analysis

RCTs, randomised controlled trials SR&MAs, systematic review with meta-analysis

RCTs, randomised controlled trials SR&MAs, systematic review with meta-analysis

RCTs, randomised controlled trials SR&MAs, systematic review with meta-analysis

↑ INCREASED NUMBER OF RWE PUBLICATIONS (2020-2022)

Half of studies were conducted in AsiaOnly 8% in more than one countryRWD sources were medical records in 60%

87% of studies were *retrospective*Only 16% were *population-based*Median of journal's impact factor was 4.4 (IQR 3.0, 5.3)

REAL WORLD DATA AND DIGITAL ONCOLOGY

SCOPE OF THIS PRESENTATION

When and how to use Real-World Data/Evidence for clinical decision making?

RWE studies promise higher generalisability than clinical trials,
 offering the possibility to generate evidence from RWD of

subpopulations under-represented in clinical trials

When and how to use Real-World Data/Evidence for clinical decision making?

1) Use cases of RWE with direct impact in clinical practice (contextual or therapeutic) *Disease characteristics and survival*

Treatment effectiveness (non-comparative and comparative)

2) Use cases of RWE for decision making and indirect impact in clinical practice

Pre-marketing efficacy evaluation

Health technology assessment (HTA)

3) Why good primary data collection and reporting guidelines are so important?

When and how to use Real-World Data/Evidence for clinical decision making?

 Use cases of RWE with direct impact in clinical practice (contextual or therapeutic) Disease characteristics and survival

Treatment effectiveness (non-comparative and comparative)

2) Use cases of RWE for decision making and indirect impact in clinical practice

Pre-marketing efficacy evaluation

Health technology assessment (HTA)

3) Why good primary data collection and reporting guidelines are so important?

DISEASE CHARACTERISTICS AND SURVIVAL

Epidemiological impact of breakthrough therapies & remaining unmet needs

What is the **real-life benefit** of new therapies introduced overtime for the treatment of patients with breast cancer?

How was this benefit observed by disease subtype?

Which are the **unmet needs to prioritise** research and development?

Epidemiological impact of breakthrough therapies & remaining unmet needs

✓ Nationwide high-quality RWD may provide indirect evidence of impact of new treatments and areas of unmet need.

No real-life OS improvements for ER+/HER2- or TNBC subtypes between 2008 and 2016 !! ! Selection bias

REAL WORLD DATA AND DIGITAL ONCOLOGY

N=20,446

Grinda T., Antoine A, Jacot W, et al. ESMO Open. 2021 Jun;6(3):100114. ER, estrogen-receptor; OS, overall survival; TNBC, triple-negative breast cancer

DISEASE CHARACTERISTICS AND SURVIVAL

Disease presentation and prognosis of uncommon entities

How is **disease stage at presentation** of early breast invasive lobular carcinoma?

What is the **prognosis** of these patients compared to other subtypes?

DISEASE CHARACTERISTICS AND SURVIVAL (BE Cancer Registry)

Disease presentation and prognosis of uncommon entities (e.g. lobular EBC)

Figure 1: Unadjusted overall survival curves

"Patients with ILC had	
higher rates of	
T3 stage	
(14.0% vs 4.4%, p<0.01),	
N3 stage	
(5.6% vs 2.9%, p<0.0001)	
(\ldots) "	
(when compared to NST)	

Table 4: Overall survival adjusted for T and N

	Events/Total	Hazard Ratio (95% CI)	P-value
Histological type			
NST	10092/40784	Reference	
ILC	1942/7092	1.00 (0.95-1.05)	0.9136
T stage			
1	4552/27504	Reference	
2	5565/16225	2.10 (2.02-2.19)	<.0001
3	1133/2770	2.36 (2.20-2.53)	<.0001
4	782/1341	4.01 (3.70-4.34)	<.0001
N stage			
0	6091/30623	Reference	
1	3728/12696	1.21 (1.16-1.26)	<.0001
2	1320/2978	1.81 (1.70-1.93)	<.0001
3	895/1579	2.51 (2.33-2.70) <.00	

✓ Population-based RWD sources may provide important evidence of disease behaviour of uncommon entities.

REAL WORLD DATA AND DIGITAL ONCOLOGY

Nader-Marta G, Ameye L, Martins-Branco D, Ann Oncol. 2024;35:S336-7

ESMO WEBINAR SERIES

BE, Belgian; eBC, early breast cancer; ILC, invasive lobular carcinoma; NST, breast cancer of no special type; N, node; T, tumour

When and how to use Real-World Data/Evidence for clinical decision making?

1) Use cases of RWE with direct impact in clinical practice (contextual or therapeutic)

Disease characteristics and survival

Treatment effectiveness (non-comparative and comparative)

2) Use cases of RWE for decision making and indirect impact in clinical practice

Pre-marketing efficacy evaluation

Health technology assessment (HTA)

3) Why good primary data collection and reporting guidelines are so important?

TREATMENT EFFECTIVENESS

Subgroups routinely excluded from clinical trials

ESMO WERINAR SERIES

What is the value of **neoadjuvant chemotherapy for stage I TNBC**?

Is **pCR** of patients with **ER-low early breast cancer** treated with neoadjuvant **pembrolizumab** closer to TNBC or ER-positive disease?

TREATMENT EFFECTIVENESS (*Netherlands Cancer Registry*) Subgroups routinely excluded from clinical trials (neoadj ChT for stage I TNBC)

Pathological response:

	%
656	57.3%
488	42.7%

Variables **significantly associated** (p < 0.05) with pCR in univariable analysis remained significant in multivariable logistic regression

Younger age (<50 vs ≥50): OR = 1.75 (1.36-2.26) Higher tumor grade (3 vs 1/2): OR = 2.07 (1.55-2.76 Lobular (vs ductal): OR = 0.18 (0.03-0.69)

Univariable logistic regressior

Subgroup	Patient	s pCR (%)	OR (95% CI)	p-value
Age				
Age ≥50	579	49.2%	-	-
Age <50	565	65.7%	 1.97 (1.56 to 2.51)	< 0.001
Grade				
1/2	274	40.5%		
3	777	61.5%	 → 2.35 (1.77 to 3.12)	< 0.001

Pathologic complete response and survival after neoadjuvant chemotherapy in stage I TNBC: a registry-based study

Manon de Graaf, Robbert C.A.M. Gielen, Sara Balduzzi, Sabine Siesling, Sabine C. Linn & Marleen Kok

Netherlands Cancer Institute, Amsterdam, The Netherlands

	N	4-year OS (95% Cl)
pCR	656	98% (97% - 99%)
Residual disease	488	93% (90% - 96%)

Median follow-up 3.8 years (IQR 2.4-5.6 years)

Total no. events = 39 (3.4%)

pCR is the only significant variable in multivariable Cox proportional hazard model* - **p<0.001**

 $\Lambda 5\%$

* Factors considered: age, grade, cT, histology, platinum, radiotherapy & capecitabine

N=1,144

REAL WORLD DATA AND DIGITAL ONCOLOGY

De Graaf M. Gielen RCAM. Balduzzi S. et al. Ann Oncol 2024:35:S309-348

Overall survival was defined as the time from diagnosis to death from any cause

neoadj ChT, neoadjuvant chemotherapy; pCR, pathologic complete response; TNBC, triple-negative breast cancer

TREATMENT EFFECTIVENESS (Netherlands Cancer Registry)

Subgroups routinely excluded from clinical trials (neoadj ChT for stage I TNBC)

neoadj ChT, neoadjuvant chemotherapy; pCR, pathologic complete response; TNBC, triple-negative breast cancer

TREATMENT EFFECTIVENESS (*PROMENADE cohort*)

Subgroups routinely excluded from clinical trials (pembrolizumab for ER-low EBC)

PROMENADE: PembROlizuMab for early ER-low/HER2breast caNcer, reAlworID frEnch cohort

F. Cherifi¹, L. Cabel², C. Bousrih³, E. Volant⁴, F. Dalenc⁵, B. Mery⁶, M. Auvray Kuentz⁷, M. Alexandre⁸, L. Benistant⁹, M. Leheurteur¹⁰, C. Bailleux¹¹, M. Debled¹², J-S. Frenel¹³, D. Loirat², F.C. Bidard², S. Aho¹⁴, A. Glenet¹⁵, J.T.L. Ribeiro Mourato³, F. Christy¹⁶, G. Emile¹

RCB	n (%)
0	85 (75 %)
1	9 (8 %)
2	12 (11 %)
3	7 (6 %)
Progressive disease	1 (1 %)

N=114

REAL WORLD DATA AND DIGITAL ONCOLOGY

Cherifi F, Cabel L, Bousrih C, et al. Ann Oncol 2024;35:S309-348

ESMO WEBINAR SERIES

ER, estrogen-receptor; pCR, pathologic complete response; RCB, residual cancer burden; TNBC, triple-negative breast cancer

TREATMENT EFFECTIVENESS

Interventions with inconsistent or weak magnitude of benefit in RCTs

Is effectiveness of everolimus clinically relevant after CDK4/6i?

TREATMENT EFFECTIVENESS (Belgian Cancer Registry)

Interventions with inconsistent benefit in RCTs (surgery of 1ary tumour in dnMBC)

Fig. 2 Kaplan-Meier curves for overall survival in (A) all patients, (B) patients with estrogen receptor (ER)-positive/HER2-negative subtypes, (C) HER2-positive subtype and (D) triple-negative subtype (TNBC); CI: confidence interval; HR: hazard ratio – adjusted for age,

REAL WORLD DATA AND DIGITAL ONCOLOGY

Brandão M, Martins-Branco D, De Angelis C, et al. Breast Cancer Res Treat. 2024;203(2):351-363 1ary. primary: dn/MBC. de novo metastatic breast cancer: RCTs. randomised controlled trials

TREATMENT EFFECTIVENESS (EVERGREEN cohort)

Interventions with weak magnitude of benefit in RCTs (everolimus for MBC)

Fig. 1. Kaplan-Meier curves for rwPFS (N=207, 202 events)

 Table 3. Multivariable analysis for rwPFS (N=190, 185 events)

		Events / Total	HR (95% C <u>I)</u>
Treatment	Everolimus	132/137	0.68 (0.47-0.99)
	ET alone	53/53	Reference
Age Class	<50	37/37	Reference
(years)	50-69	101/104	0.63 (0.42-0.95)
	≥70	47/49	0.65 (0.40-1.04)
ECOG PS	0-1	173/177	Reference
	2-3	12/13	1.12 (0.57-2.19)
Charlson score	6	141/146	Reference
	7	32/32	1.02 (0.67-1.57)
	≥8	12/12	0.88 (0.48-1.62)
De novo vs	De novo	55/57	Reference
recurrent ABC	Recurrent	130/133	0.86 (0.61-1.22)
Histological	Ductal	129/132	Reference
subtype	Lobular	29/30	1.20 (0.78-1.86)
	Mixed/other	27/28	0.65 (0.42-1.01)
Progesterone	Negative	56/56	Reference
receptor	Positive	129/134	0.91 (0.65-1.28)
Metastatic	Bone only	59/61	Reference
sites	Visceral/CNS	126/129	1.16 (0.83-1.62)
Number of	1	121/125	Reference
prior lines	>1	64/65	1.65 (1.17-2.34)
Duration of	≤12 months	81/84	Reference
CDK4/6i	>12 months	104/106	0.83 (0.60-1.15)

ABC, advanced breast cancer; CDK4/6i, CDK4/6 inhibitor; CI, confidence intervale; CNS, central nervous system; ECOG PS, Eastern Cooperative Oncology Group performance status; ET, endocrine therapy; HR, hazard ratio

REAL WORLD DATA AND DIGITAL ONCOLOGY

Lobo-Martins SL, Martins-Branco D, Aftimos P, et al. Ann Oncol. 2024;35:S365-366

EVE, everolimus; ETa, endocrine therapy alone; RCTs, randomised controlled trials; rwPFS, real-world progression-free survival

When and how to use Real-World Data/Evidence for clinical decision making?

1) Use cases of RWE with direct impact in clinical practice (contextual or therapeutic) Disease characteristics and survival

Treatment effectiveness (non-comparative and comparative)

2) Use cases of RWE for decision making and indirect impact in clinical practice *Pre-marketing efficacy evaluation*

Health technology assessment (HTA)

3) Why good primary data collection and reporting guidelines are so important?

USE OF RWE FOR PRE-MARKETING EVALUATION

Reported use of RWE for clinical efficacy evaluation in EPARs

ESMO WEBINAR SERIES

RWE for clinical efficacy evaluation was reported in the EPAR of **16 of 75 indications (21.3%)** RWE's role was "**supportive**" in

12 of 16 (75.0%) indications

REAL WORLD DATA AND DIGITAL ONCOLOGY

Derksen JWG, Martins-Branco D, Valachis A, et al. ESMO RWD&DO 2024;4:100039 EPAR, European Public Assessment Report

USE OF RWE FOR PRE-MARKETING EVALUATION

Case scenario of supportive complementary study - trastuzumab deruxtecan

ESME DB-01 matched cohort

Coutinard C, Barbet V, Schiappa R, et al. ESMO RWD&DO 2024;4:100043

ESMO WEBINAR SERIES

THE VALUE OF RWE IN HEALTH ECONOMICS FOR HTA

RWE to support reimbursement decision making

Figure 1: Opinions of RWE use across ten European countries

The use of Real World Evidence in the European context

An analysis of key expert opinion

Gill, J.L, Avouac, B., Duncombe, R., Hutton, J., Jahnz-Rozyk, K., Schramm, W., Spandonaro, F., Thomas, M. and Kanavos, P.G

When and how to use Real-World Data/Evidence for clinical decision making?

1) Use cases of RWE with direct impact in clinical practice (contextual or therapeutic) Disease characteristics and survival

Treatment effectiveness (non-comparative and comparative)

2) Use cases of RWE for decision making and indirect impact in clinical practice

Pre-marketing efficacy evaluation

Health technology assessment (HTA)

3) Why good primary data collection and reporting guidelines are so important?

REAL WORLD DATA AND DIGITAL ONCOLOGY

RWE QUALITY STANDARDS

3 main dimensions

Reporting quality

dimensions more

easily assessed

in a manuscript

& study quality

are the

ESMO RWDD WG developed **ESMO GROW** *To test the compliance with the checklist*

REAL WORLD DATA AND DIGITAL ONCOLOGY

ESMO Guidance for Reporting Oncology real-World Evidence

The first reporting guidance specifically developed for oncology RWE studies

- Detailed **list of recommendations** for authors and reviewers of RWE publications.
- Broad Scope: Descriptive to Analytical

ESMO GROW

- Addresses new treatments, molecular-based epidemiology, oncology-specific variables, and techbased RWE research (AI, machine learning)
- Facilitates harmonised interpretation by all stakeholders
- Related Materials: Online Tool, Checklist, Flowchart

CONCLUSION - *take home messages*

- ✓ RWE promises higher generalisability than clinical trials, mainly for subpopulations under-represented in RCTs
- RWE can inform about disease presentation, prognostic factors, treatment effectiveness, and survival, playing an important role for clinical practice whenever clinical trial evidence is not available to guide decision
- Good quality RWE may have an important role in health policy for regulatory and health technology assessment, improving access to innovative treatments in clinical practice
- Reporting quality is essential for critical appraisal of RWE studies, providing full understanding of main study limitations and strategies to mitigate them – ESMO-GROW checklist
- The ESMO-RWDD WG aims to develop a specific tool for assessment of oncology real-world evidence study quality AND to define a minimum clinical dataset for primary data collection
- There is a need for optimising RWD collection for primary and secondary use, generating good quality RWE for supporting clinical practice decision making

ESMO Real World Data and Digital Oncology A new open access journal from ESMO & Elsevier

REAL WORLD DATA AND DIGITAL ONCOLOGY

Thank you for your attention

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

REAL WORLD DATA AND DIGITAL ONCOLOGY

COMMON BIASES IN REAL-WORLD EVIDENCE STUDIES, AND HOW TO MITIGATE THEM?

David Pérol, MD

Centre Léon Bérard, Lyon, France david.perol@lyon.unicancer.fr

DECLARATION OF INTERESTS

David Pérol

Personal fees and consulting:

AstraZeneca, Bayer, Boehringer-Ingelheim, Brenus Pharma, Bristol-Myers Squibb, Daiichi-Sankyo, Eli-Lilly, Gilead, Ipsen, Janssen, Novartis, Merck Sharp and Dohme, Pfizer and Takeda

Travel funding:

Novartis, Roche

INTRODUCTION

REAL WORLD DATA AND DIGITAL ONCOLOGY

SCOPE OF THIS PRESENTATION

•

Is not to provide an exhaustive review of all the biases that can occur when analyzing real-world data (RWD)

SCOPE OF THIS PRESENTATION

- Is not to provide an exhaustive review of all the biases that can occur when analyzing real-world data (RWD)
- But rather to detail the **main biases** that arise when trying to answer the question of (comparative) analysis of the **efficacy of treatments** used in **clinical routine**
 - ⇒ Assessing "effectiveness" or "real-world efficacy"
 - ⇒ Atypical situations in oncology

•

ATYPICAL SITUATIONS IN ONCOLOGY

Effectiveness assessment based on RWD

- 1. Rare cancers (or subtypes) defined by a molecule defect targeted by a new treatment
 - Randomized Controlled Trial (RCT) difficult to conduct within a reasonable time frame
 - ⇒ Single Arm uncontrolled Trial (SAT)
 - Unable to assess relative treatment benefit

ATYPICAL SITUATIONS IN ONCOLOGY

Effectiveness assessment based on RWD

- 1. Rare cancers (or subtypes) defined by a molecule defect targeted by a new treatment
 - Randomized Controlled Trial (RCT) difficult to conduct within a reasonable time frame
 - ⇒ Single Arm uncontrolled Trial (SAT)
 - Unable to assess relative treatment benefit
 - ⇒ Opportunity to provide an external control arm from RWD to assess the effectiveness of the experimental treatment

ATYPICAL SITUATIONS IN ONCOLOGY (#2)

Effectiveness assessment based on RWD

2. RCT completed but questions unresolved:

- Inappropriate control arm
- Low power for definitive endpoint (overall survival)
- Short duration of follow-up
- Inconclusive RCT in subgroups of interest

ATYPICAL SITUATIONS IN ONCOLOGY (#2)

Effectiveness assessment based on RWD

2. RCT completed but questions unresolved:

- Inappropriate control arm
- Low power for definitive endpoint (overall survival)
- Short duration of follow-up
- Inconclusive RCT in subgroups of interest

⇒ Opportunity to use RWD to assess the effectiveness of comparative treatments

SCOPE OF THIS PRESENTATION

- To detail the **main biases** that arise when trying to answer the question of (comparative) analysis of the **efficacy of treatments** used in **clinical routine**
 - ⇒ Assessing "effectiveness" or "real-world efficacy"
 - ⇒ Atypical situations

In this context, appropriate methods to mitigate biases require large cohorts of RWD, based on EHR, with a high level of quality and granularity (baseline patient characteristics, outcomes...): ESME (France) ¹, FLATIRON (USA) ²...

1. Pérol D et al. BMJ open 2019. 2. Flatiron Health: Real-world evidence, 2023. <u>https://flatiron.com/real-world-evidence/</u>

EHR: Electronic Health Records

MAIN BIASES ASSOCIATED WITH THE USE OF RWD

REAL WORLD DATA AND DIGITAL ONCOLOGY

- An appropriate and *a priori-*defined protocol:
 - Eligibility criteria explicitly stated: patient population in the experimental and control groups is similar

- An appropriate and *a priori-*defined protocol:
 - Eligibility criteria explicitly stated: patient population in the experimental and control groups is similar
 - For each patient, time zero of follow-up (T₀) = time when 3 things happen: eligibility criteria are met; treatment strategies are assigned; and study outcomes (survival) begin to be counted ¹

1. Hernan MA & Robins JM, Am J Epidemiol. 2016

REAL WORLD DATA AND DIGITAL ONCOLOGY

• An appropriate and *a priori-*defined protocol:

- Eligibility criteria explicitly stated: patient population in the experimental and control groups is similar
- For each patient, time zero of follow-up (T₀) = time when 3 things happen: eligibility criteria are met; treatment strategies are assigned; and study outcomes (survival) begin to be counted ¹
- The frequency and methods of tumor assessment are standardized (e.g., tumor progression \rightarrow RECIST criteria)

1. Hernan MA & Robins JM, Am J Epidemiol. 2016

REAL WORLD DATA AND DIGITAL ONCOLOGY

• An appropriate and *a priori-*defined protocol:

- Eligibility criteria explicitly stated: patient population in the experimental and control groups is similar
- For each patient, time zero of follow-up (T₀) = time when 3 things happen: eligibility criteria are met; treatment strategies are assigned; and study outcomes (survival) begin to be counted ¹
- The frequency and methods of tumor assessment are standardized (e.g., tumor progression \rightarrow RECIST criteria)
- Few or no missing data

1. Hernan MA & Robins JM, Am J Epidemiol. 2016

REAL WORLD DATA AND DIGITAL ONCOLOGY

CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT

Randomised Controlled Trial (RCT) (#2)

Average causal effect $\Delta E = E(arm A) - E(arms A + B)$

• Randomization ensures initial comparability at T₀

 \Rightarrow difference in outcomes observed = average causal effect

CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT Real-World Data (RWD) (#1)

- No *a priori-*defined protocol:
 - Eligibility criteria not explicitly stated: characteristics of the patients in experimental group may be different from those in control group → Selection bias

CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT Real-World Data (RWD) (#1)

- No *a priori-*defined protocol:
 - Eligibility criteria not explicitly stated: characteristics of the patients in experimental group may be different from those in control group → Selection bias
 - Misalignment of eligibility criteria and treatment assignment → Immortal time bias

IMMORTAL TIME BIAS

Observational study (RWD)

- This bias occurs when there is a period during follow-up where the outcome cannot occur because of study design (e.g., the period between cohort entry and exposure)
 - Happens when researchers assign patients to treated group by using information that is observed after the participant enters the study (after time-zero)

Source: Lèvesque LE et al. BMJ 2010.

REAL WORLD DATA AND DIGITAL ONCOLOGY

ESMO WEBINAR SERIES

CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT Real-World Data (RWD) (#1)

Treatments A + B (experimental)

- No *a priori-*defined protocol: ۲
 - Eligibility criteria not explicitly stated: characteristics of the patients in experimental group may be different from those in control group \rightarrow Selection bias
 - Misalignment of eligibility criteria and treatment assignment \rightarrow Immortal time bias
 - The frequency and methods of tumor assessment are not standardized \rightarrow Information bias (measurement bias in • interval-censored outcomes)¹

1. Siu DHW JCO Precis Oncol 2024.

ESMO WEBINAR SERIES

CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT Real-World Data (RWD) (#1)

Treatments A + B (experimental)

- No *a priori-*defined protocol: ۰
 - Eligibility criteria not explicitly stated: characteristics of the patients in experimental group may be different from those in control group \rightarrow Selection bias
 - Misalignment of eligibility criteria and treatment assignment \rightarrow Immortal time bias
 - The frequency and methods of tumor assessment are not standardized \rightarrow Information bias (measurement bias in • interval-censored outcomes)¹
 - RWD studies are more likely to have **missing data** compared with clinical trials¹

1. Siu DHW JCO Precis Oncol 2024.

CAUSAL INFERENCE IN TREATMENT EFFECT ASSESSMENT Real-World Data (RWD) (#2)

- Absence of randomisation to ensure equivalent groups for comparison:
 - Heterogeneity of compared groups → Confusion bias
 - In routine clinical practice, doctors do not prescribe treatments "at random": implicit or explicit allocation based on patient risk (co-factors) → "confusion" between co-factor effect and treatment effect
 - For example, if more ECOG PS 0-1 patients are assigned to the experimental group than to control, and if PS is independently more likely to be associated with survival, the new treatment may falsely appear to be beneficial

Treatments A, B, C... are in fact prescribed preferentially to patients with a +/- high risk of developing the event

REAL WORLD DATA AND DIGITAL ONCOLOGY

CAUSAL INFERENCE FROM OBSERVATIONAL DATA Summary

- In RWD studies, difference in outcomes naively observed is subject to biases:
 - $_{\scriptscriptstyle \odot}$ Selection bias
 - Immortal time bias
 - Information bias
 ■
 - Solution → Missing data
 - Sonfounding bias...

Average causal effect $\Delta E \neq E(arm A) - E(arms A + B)$

⇒ How to mitigate them?

REAL WORLD DATA AND DIGITAL ONCOLOGY

HOW TO MITIGATE BIASES? TARGET TRIAL EMULATION

REAL WORLD DATA AND DIGITAL ONCOLOGY

THE TARGET TRIAL

This Issue Views 22,975 | Citations 17 | Altmetric 111

JAMA Guide to Statistics and Methods

December 12, 2022

Target Trial Emulation A Framework for Causal Inference From Observational Data

Miguel A. Hernán, MD, DrPH¹; Wei Wang, PhD²; David E. Leaf, MD, MMSc³

≫ Author Affiliations

JAMA. 2022;328(24):2446-2447. doi:10.1001/jama.2022.21383

A Center to Learn What Works

Sources: Hernan MA, Robins JM. Causal Inference: What If. Boca Raton. Chapman & Hall/CRC. 2020; Hernan MA et al, JAMA 2022

REAL WORLD DATA AND DIGITAL ONCOLOGY

THE TARGET TRIAL

A practical way to ask a causal question in non-interventional studies is to specify a protocol of the target trial

⇒ **The target trial:** the hypothetical randomized trial that we would like to conduct to answer a causal question

A Center to Learn What Works

Sources: Hernan MA, Robins JM. Causal Inference: What If. Boca Raton. Chapman & Hall/CRC. 2020; Hernan MA et al, JAMA 2022

THE TARGET TRIAL

A practical way to ask a causal question in non-interventional studies is to specify a protocol of the target trial

⇒ **The target trial:** the hypothetical randomized trial that we would like to conduct to answer a causal question

⇒ Why do we need to explicitly emulate a target trial for causal inference from observational data?

= because not doing so leads to bias

A Center to Learn What Works

ESMO WEBINAR SERIES

Sources: Hernan MA, Robins JM. Causal Inference: What If. Boca Raton. Chapman & Hall/CRC. 2020; Hernan MA et al, JAMA 2022

Key concepts

Explicitly emulating the target trial eliminates self-inflicted injuries:

• Selection bias with an explicit application (keys elements) of the protocol to observational data

Sources: Hernan MA & Robins JM, Am J Epidemiol. 2016; Hernan MA et al, JAMA 2022

Key concepts

ESMO WEBINAR SERIES

Explicitly emulating the target trial eliminates self-inflicted injuries:

- Selection bias with an explicit application (keys elements) of the protocol to observational data
- Immortal time-bias with a specification of time zero:
 - T₀ must be synchronized with determination of eligibility and assignment of treatment strategies

Sources: Hernan MA & Robins JM, Am J Epidemiol. 2016; Hernan MA et al, JAMA 2022

Key concepts

Explicitly emulating the target trial eliminates self-inflicted injuries:

- Selection bias with an explicit application (keys elements) of the protocol to observational data
- Immortal time-bias with a specification of time zero:
 - T₀ must be synchronized with determination of eligibility and assignment of treatment strategies
- Information bias by ensuring similarity in the extent and quality of data capture between the arms

Sources: Hernan MA & Robins JM, Am J Epidemiol. 2016; Hernan MA et al, JAMA 2022

Key concepts

Explicitly emulating the target trial eliminates self-inflicted injuries:

- Selection bias with an explicit application (keys elements) of the protocol to observational data
- Immortal time-bias with a specification of time zero:
 - T₀ must be synchronized with determination of eligibility and assignment of treatment strategies
- Information bias by ensuring similarity in the extent and quality of data capture between the arms
- Multiple imputation strategies can be applied to handle missing data

Sources: Hernan MA & Robins JM, Am J Epidemiol. 2016; Hernan MA et al, JAMA 2022

Key concepts

Explicitly emulating the target trial eliminates self-inflicted injuries:

- Selection bias with an explicit application (keys elements) of the protocol to observational data
- Immortal time-bias with a specification of time zero:
 - T₀ must be synchronized with determination of eligibility and assignment of treatment strategies
- Information bias by ensuring similarity in the extent and quality of data capture between the arms
- Multiple imputation strategies can be applied to handle missing data

In addition, emulation requires statistical adjustment for confounding due to the lack of randomisation

Sources: Hernan MA & Robins JM, Am J Epidemiol. 2016; Hernan MA et al, JAMA 2022

TARGET TRIAL EMULATION FRAMEWORK

Applying key methodological & design components of RCT to observational data

Step 1 Designing the target (ideal) trial protocol: explicit description of key elements, *a priori*

- Treatment strategies
- □ Treatment assignment: randomization
- □ Follow-up
- □ Outcome(s)
- □ Causal contrast(s) (ITT and/or PP)
- □ Analysis plan

Step 2 Conducting/Emulating the target trial: explicit application of the protocol to observational data

- □ Eligibility criteria
- □ Treatment strategies
- Treatment assignment: hypothetical randomization process (confounding adjustment)

ESMO WEBINAR SERIES

- □ Follow-up
- □ Outcome(s)
- □ Causal contrast(s) (ITT and/or PP)
- □ Analysis plan

Sources: Hernan MA & Robins JM, Am J Epidemiol. 2016; Hernan MA et al, JAMA 2022

ILLUSTRATION ESME Metastatic Breast Cancer (MBC)

OXFORD

JNCI: Journal of the National Cancer Institute, 2023, 115(8), 971-980 https://doi.org/10.1093/jnci/djad092 Advance Access Publication Date: May 23, 2023 Article

Target trial emulation to assess real-world efficacy in the **Epidemiological Strategy and Medical Economics** metastatic breast cancer cohort

Alison Antoine (), MSc,^{1,2} David Pérol (), MD,^{1,*} Mathieu Robain, MD, PhD,³ Suzette Delaloge (), MD,⁴ Christine Lasset (), MD, PhD, 2,5 Youenn Drouet, PhD2,5

¹Clinical Research and Biostatistics Department, Centre Léon Bérard, Lyon, France UMR CNRS 5558 LBBE, Claude Bernard Lvon 1 University, Villeurbanne, France ³Data Direction, UNICANCER, Paris, France ⁴Department of Cancer Medicine, Gustave Roussy, Villejuif, France Prevention & Public Health Department, Centre Léon Bérard, Lyon, France

*Correspondence to: David Pérol, MD, Clinical Research and Biostatistics Department, Centre Léon Bérard, 28 rue Laennec, 69008 Lvon, France (e-mail: david.pero)@lvon.unicancer.fr)

Abstract

Background: Real-world data studies usually consider biases related to measured confounders. We emulate a target trial implementing study design principles of randomized trials to observational studies; controlling biases related to selection, especially immortal time; and measured confounders.

Methods: This comprehensive analysis emulating a randomized clinical trial compared overall survival in patients with HER2negative metastatic breast cancer (MBC), receiving as first-line treatment, either paclitaxel alone or combined to bevacizumab. We used data from 5538 patients extracted from the Epidemiological Strategy and Medical Economics-MBC cohort to emulate a target trial using advanced statistical adjustment techniques including stabilized inverse-probability weighting and G-computation, dealing with missing data with multiple imputation, and performing a quantitative bias analysis for residual bias due to unmeasured confounders

Results: Emulation led to 3211 eligible patients, and overall survival estimates achieved with advanced statistical methods favored the combination therapy. Real-world effect sizes were close to that assessed in the existing E2100 randomized clinical trial (hazard ratio = 0.88, P = .16), but the increased sample size allowed to achieve a higher level of precision in real-world estimates (ie, reduced confidence intervals). Quantitative bias analysis confirmed the robustness of the results with respect to potential unmeasured confounding.

Conclusion: Target trial emulation with advanced statistical adjustment techniques is a promising approach to investigate longterm impact of innovative therapies in the French Epidemiological Strategy and Medical Economics-MBC cohort while minimizing biases and provides opportunities for comparative efficacy through the synthetic control arms provided. Database registration: clinical trials.gov Identifier NCT03275311.

Source: Antoine A et al. J Natl Cancer Inst. 2023.

REAL WORLD DATA AND DIGITAL ONCOLOGY

18 Comprehensive cancer centers (CCC) over 20 sites

Selected patients

unicancer

Inclusion criteria

ESME

- o Male/Female
- $\circ \geq 18$ years
- MSC* management in a CCC since 2008

*Radiotherapy, chemotherapy, targeted therapy or hormone therapy

18 contributing centers

ILLUSTRATION (#2) ESME MBC : PALOMA-3 TRIAL

Antoine A et al. Eur J Cancer 2024. In press.

REAL WORLD DATA AND DIGITAL ONCOLOGY

ILLUSTRATION (#3)

ESME Metastatic Breast Cancer (MBC)

1. Selecting the emulated population

- ✓ Selection bias (by design)
- Immortality bias (by design)
- Information bias (by design)...
- X Confusion bias
- 2. Statistical analysis: estimating the treatment effect
- Confusion bias (adjustment)
- X Residual confusion?

SIPTW: Stabilized inverse probability of treatment weighting; GC: g-computation

ESMO WEBINAR SERIES

STATISTICAL ADJUSMENT METHODS

- Cox's multivariate regression
- Stabilized Inverse Probability of Treatment Weighting (SIPTW)
- G-computation

STATISTICAL ADJUSMENT METHODS (#2)

ESMO WEBINAR SERIES

- Stabilized Inverse Probability of Treatment Weighting (SIPTW)¹
 - Weighting method based on the propensity score (PS)
 - PS: defined as the probability of receiving a specific treatment conditional on its observed baseline characteristics
 - The PSs of patients in the experimental arm are weighted against those in the control arm so that baseline characteristics are balanced

1. Robins, Hernan & Brumback Epidemiology 2000.

STATISTICAL ADJUSMENT METHODS (#3)

- G-computation ^{1,2}
 - Multistage process, modelling outcome as a function of treatment and adjustment covariates under different
 - exposure scenarios

1. Snowden JM, Rose S & Mortimer KM Am J Epidemiol 2011. 2. Chetton A et al. Sci Rep 2020.

PALOMA-3: TRIAL EMULATION USING ESME-MBC COHORT

Antoine A. et al. Eur J Cancer 2024. In Press.

REAL WORLD DATA AND DIGITAL ONCOLOGY

APPLICATION

Survival following adjuvant trastuzumab-based treatment among older patients with HER2-positive early invasive breast cancer: A national population-based cohort study using routine data

Melissa Ruth Gannon ^{a,b,*}, David Dodwell ^c, Katie Miller ^{a,b}, Jibby Medina ^{a,b}, Karen Clements ^d, Kieran Horgan ^e, Min Hae Park ^{a,b}, David Alan Cromwell ^{a,b}

Haz. ratio (95% CI)
1
0.57 (0.34, 0.95)
0.43 (0.32, 0.59)
0.47 (0.37, 0.61)
0.68 (0.42, 1.11)
1
0.57 (0.45, 0.72)
0.52 (0.25, 1.07)
0.43 (0.21, 0.89)
0.54 (0.43, 0.69)
0.61 (0.34, 1.10)
0.55 (0.30, 1.02)
0.61 (0.42, 0.88)
0.53 (0.39, 0.71)
0.46 (0.22, 0.95)
0.59 (0.42, 0.81)
- 0.51 (0.37, 0.69)
→ 1.04 (0.30, 3.60)
0.71 (0.46, 1.09)
0.49 (0.38, 0.63)
i
0.57 (0.40, 0.82)
0.55 (0.42, 0.72)
> 0.56 (0.45, 0.70)

Source : MR Gannon et al. Eur J Cancer 2024.

PERSPECTIVE: EXTERNAL CONTROL IN SAT

FIRST-NEC CLINICAL TRIAL (NCT06393816) in large-cell neuroendocrine lung cancer patients

- Single-Arm Phase II Trial with RW external control (ESME lung cancer cohort)
 - Emulation of a target trial to assess the efficacy of standard chemotherapy (CT) \pm immune checkpoint inhibitor (ICI)

- Trial emulation combined with appropriate adjustment can mitigate biases in RWD
 - > Implementation of eligibility criteria is a critical factor, like adjustment, in limiting biases in RWD studies
 - > Promising in atypical situations: external control in SAT, RCTs subgroups issues, long-term OS measurement...
- Constraints and limitations:
 - Emulation requires large databases with high quality & granularity
 - Emulation of placebo and double-blind assignment is not possible
 - > Difficulty of emulating contemporaneous arms in some situations
 - > **Potential residual bias**: use of sensitivity analyses (simulation, negative controls)

REAL WORLD DATA AND DIGITAL ONCOLOGY

REAL WORLD DATA AND DIGITAL ONCOLOGY

Thank you for your attention

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

