

ER+ METASTATIC BREAST CANCER: REFINING PRACTICE AND STEERING RESEARCH

Peter Schimd, Chair

Barts Cancer Institute London

PROGRAMME AND SPEAKERS

3 July 2024	
5 min	Welcome and introduction
	Peter Schmid
25 min	How to tackle endocrine resistance? Current concepts and
	Stephen Johnston
25 min	Breakthrough research on the Role of liquid biopsy and molecular analysis
	Francois-Clement Bidard
25 m <mark>in</mark>	What to do with endocrine refractory patients? Current concepts and ongoing research
	Alessandra Gennari
15 min	LIVE Discussion and Q&A
	All

Peter Schmid

Chair Barts Cancer Institute London

Stephen Johnston Speaker Royal Marsden NHS

Foundation Trust & Institute of Cancer Research

François-Clément Bidard

Speaker Institut Curie & UVSQ/Université Paris-Saclay

Alessandra Gennari

Speaker University of Piemonte Orientale; Maggiore della Carità Hospital

LEARNING OBJECTIVES

- To acquire a deeper understanding of the clinical course of breast cancer.
- To understand biological hypotheses on classification and risk stratification, ongoing/required research in therapeutics and knowledge of use of omics technologies for biomarker-enabled precision medicine for breast cancer.
- To develop skills and abilities for critical analysis, interpretation of research data and therapeutic strategies.
- To become better equipped for informed, innovative thinking and engagement in ongoing or new research projects.

THANK YOU FOR YOUR ATTENTION

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

ER+ METASTATIC BREAST CANCER: REFINING PRACTICE AND STEERING RESEARCH

How to tackle endocrine resistance? Current concepts and ongoing research

Stephen R D Johnston

Professor of Breast Cancer Medicine Royal Marsden Hospital & The Institute of Cancer Research, London, UK

DECLARATION OF INTERESTS

Stephen Johnston

Consulting or Advisory Role: Eli Lilly, Puma Biotechnology, Pfizer, Novartis, Sanofi Genzyme

Speaker Honoraria: Pfizer, Novartis, Eisai, Eli Lilly, AstraZeneca, Roche/Genentech, Sanofi Genzyme

Research Funding: Laboratory Studies: Pfizer, Puma Biotechnology *Clinical Trials*: Eli Lilly, Pfizer, AstraZeneca, Novartis, Roche/Genentech

ESMO DEEP DIVE: BREAST CANCER

TACKLING ENDOCRINE RESISTANCE IN METASTATIC BREAST CANCER (MBC)

Current Questions in Clinical Practice

- 1. What is Endocrine Resistance ?
 - ESMO definitions
 - What are the Key Mechanisms for Endocrine Resistance ?

2. How to select Endocrine Treatment (ET) options for Endocrine Resistance in ER+ MBC?

- How to overcome Primary (De-Novo) Endocrine Resistance in 1st-line setting?
- Mutation testing in 2nd line setting when and how to test ?

3. Current Research: Testing Emerging Treatments for Endocrine Resistance in Breast Cancer ?

- Lessons from Pre-surgical Clinical Models to identify Biomarkers of Endocrine Resistance

ESMO DEEP DIVE: BREAST CANCER

ESMO WEBINAR SERIES

Definitions of Endocrine Resistance in ER+ MBC

PRIMARY ENDOCRINE RESISTANCE

Relapse while on the first 2 years of adjuvant ET, or PD within first 6 months of 1st line ET for MBC, while on ET

SECONDARY (ACQUIRED) ENDOCRINE RESISTANCE Relapse while on adjuvant ET but after the first 2 years, or relapse within 12 months of completing adjuvant ET, or PD \geq 6 months after initiating ET for MBC, while on ET

European Society for Medical Oncology

Network of intra-cellular signaling pathways involved in Endocrine Resistance in HR+ BC

JNCI

Johnston S. J Natl Cancer Inst. 2015;107(10)

Genetic landscape of "endocrine-resistant" advanced breast cancer

Razavi P et al. Cancer Cell. 2018:34:427-38.

Genomic mutations in ER+ advanced breast cancer

Genomic alterations in ER+ tumors

Cluster of mutations in amino acids 537-538 in ligand-binding domain reported in AI pretreated pts, conferring constitutive activation

Zhang Q.X et al. Cancer Res 1997 Li S et al. Cell Reports 2013 Toy W et al. Nat Gen 2013 Robinson DR et al. Nat Gen 2013 Merenbakh-Lamin K et al. Cancer Res 2013 Jeselsohn R et al. Clin Cancer Res 2014

ESR1 mutations in SoFEA trial

HR+ve Metastatic Breast Cancer with prior sensitivity to NSAI (n = 723)

N=161 blood samples available for testing

Johnston SR, et al. Lancet Oncol. 2013;14(10):989-98

39.1% patients (63/161) had ESR1 mutations detected in baseline plasma

ESR1 mutations polyclonal in 49.1%

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Charlotte Fribbens, Ben O'Leary, Sarah Hrebier, Isaac Garcia-Murillas, Matthew Beaney, Mitch Dowsett, and Nicholas C. Turner, Institute of Cancer Research; Charlotte Fribbens, Ben O'Leary, Stephen R.D. Johnston, and Nicholas C. Turner,

Plasma *ESR1* Mutations and the Treatment of Estrogen Receptor–Positive Advanced Breast Cancer

Charlotte Fribbens, Ben O'Leary, Lucy Kilburn, Sarah Hrebien, Isaac Garcia-Murillas, Matthew Beaney, Massimo Cristofanilli, Fabrice Andre, Sherene Loi, Sibylle Loibl, John Jiang, Cynthia Huang Bartlett, Maria Koehler, Mitch Dowsett, Judith M. Bliss, Stephen R.D. Johnston, and Nicholas C. Turner

Fribbens C, et al. J Clin Onc. 2016;34(25):2961-8

RESEARCH ARTICLE | OCTOBER 27 2023

Landscape of baseline and acquired genomic alterations in circulating tumor DNA with abemaciclib alone or with endocrine therapy in advanced breast cancer a

Matthew P. Goetz 🕿 🐵 ; Erika P. Hamilton 🐵 ; Mario Campone 🕲 ; Sara A. Hurvitz 🐵 ; Javier Cortes 📀 ; Stephen Johnston 🕲 ; Antonio Llombart-Cussac 💿 ; Peter A. Kaufman 😕 ; Masakazu Toi 🐵 ; Guy Jerusalem 🕲 ; Hillary Graham 🕒 ; Hong Wang 🌝 ; Valerie M. Jansen 🕲 ; Lacey M. Litchfield 🐵 ; Miguel Martin 💿 81% M-3 and 90% NM patients had at least one genomic alteration detected in ctDNA at baseline:

- amplifications (copy number alterations)
- point mutations (single nucleotide variants)
- insertions / deletions
- 🗖 multiple

Goetz MP et al. Clin Cancer Res. 2023 Oct 27. doi: 10.1158/1078-0432.CCR-22-3573.

Subtype in HR+/HER2-negative metastatic breast cancer

HER2-enriched Subtype and Overall Survival in HR+/HER2-neg Metastatic Breast Cancer (N=905)

~80% of the samples were from the primary tumour

Prat A et al. JAMA Oncology. 2016;2(10):1287-1294;
 2. 2. Prat A et al. Oncologist. 2019;24(7):893-900.

Can targeting growth factor receptors in ER+ HER2- MBC delay PFS when added to endocrine therapy?

1st-line clinical trials in ER+ HER2- MBC:

- In 2 small phase II studies, gefitinib + tamoxifen/anastrozole improved PFS in subset endocrine naïve patients (median PFS 14.6 vs 8.2 months)^{1, 2}
 - 1. Osborne et al. Clin Can Res. 2011;17:1147-59
 - 2. Cristofanilli et al. Clin Can Res. 2010;16:1904-14

Can targeting growth factor receptors in ER+ HER2- MBC delay PFS when added to endocrine therapy?

MINT: PFS

Endocrine-therapy naïve

Johnston S et al. Br Ca Res Treat. 2016;160:91-9

EGF30008: PFS

Endocrine sensitive*

Johnston S et al. J Clin Oncol. 2009;27:5538-46

Cyclin Dependent Kinase (CDK) 4/6 in ER+ Breast Cancer

- The growth of HR+ breast cancer is dependent on Cyclin D1, a direct transcriptional target of ER
- Cyclin D1 activates CDK 4/6 resulting in G1–S phase transition and entry into the cell cycle¹
- Resistance to endocrine therapy is associated with continued dependence on Cyclin D1 & CDK 4/6

Selective CDK 4/6 inhibitors

IC ₅₀	Palbociclib	Ribociclib	Abemaciclib
CDK4	9–11 nM	10 nM	2 nM
CDK6	15 nM	39 nM	5 nM
CDK2	>10 µM	>50 μM	>500 nM
CDK9	ND	ND	57 nM

Kinase selectivity tree: Bigger circles = more inhibitior

Chen P, et al. *Mol Cancer Ther* 2016;15:2273–81. Asghar U, et al. *Nat Rev Drug Discov* 2015;14:130–46;

Mechanisms of Endocrine Resistance & Therapeutic Strategies

TACKLING ENDOCRINE RESISTANCE IN METASTATIC BREAST CANCER (MBC)

Current Questions in Clinical Practice

- 1. What is Endocrine Resistance ?
 - ESMO definitions
 - What are the Key Mechanisms for Endocrine Resistance ?

2. How to select Endocrine Treatment (ET) options for Endocrine Resistance in ER+ MBC?

- How to overcome Primary (De-Novo) Endocrine Resistance in 1st-line setting ?
- Mutation testing in 2nd line setting when and how to test ?
- 3. Current Research: Testing Emerging Treatments for Endocrine Resistance in Breast Cancer ?
 - Lessons from Pre-surgical Clinical Models to identify Biomarkers of Endocrine Resistance

ESMO DEEP DIVE: BREAST CANCER

ESMO WEBINAR SERIES

ESMO ABC4 guidelines: Postmenopausal patients with ER+, HER2– ABC

ER+, HER2– ABC Postmenopausal

^a Except for relapse <12 months from finishing adjuvant AI.

Adapted from Cardoso F et al. Ann Oncol 2018;29:1634–57.

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Baseline Mutations – Prognosis and CDK 4/6i Predictive Outcome

MONARCH-3

Subgroup	N		Hazard Ratio I (95% CI)	nteraction P-value	Number	of Events	Mediar	PFS
Population ITT TR	493 295		0.52 (0.42, 0.66) 0.45 (0.33, 0.61)	19	Abernaciclib 170 93	Placebo 123 71	Abemaciclib 28.18 38.73	Placebo 14.76 16.54
Genomic Alteration Detected Not Detected	240 55		0.49 (0.35, 0.69) 0.25 (0.1, 0.58)	0.152	83 10	59 12	32.75 NA	15.35 17.46
TP53 Detected Not Detected	75 220		0.52 (0.29, 0.92) 0.42 (0.29, 0.61)	0.835	29 64	19 52	26.99 30.91	12.82 17.46
EGFR Detected Not Detected	35 260		0.22 (0.09, 0.53) 0.5 (0.36, 0.71)	0.02	9 84	14 57	38.73 37.51	7.2 19.23
FGFR1 Detected Not Detected	34 261		0.25 (0.1, 0.63) 0.46 (0.33, 0.64)	0.042	15 78	9 62	32.75 39.91	7.17 19.23
NF1 Detected Not Detected	32 263		→ 0.41 (0.15, 1.11) 0.45 (0.33, 0.63)	0.614	11 82	6 65	35.9 38.73	14.63 16.93
MYC Detected Not Detected	28 269		0.36 (0.14, 0.93) 0.45 (0.32, 0.63)	0.261	11 82	9 62	12.49 38.89	6.49 19.23
CCND1 Detected Not Detected	25 270		0.25 (0.08, 0.74) 0.48 (0.34, 0.66)	0.047	8 85	9 62	32.75 38.73	7.17 19.23
PIK3CA Detected Not Detected	111 184		0.72 (0.43, 1.19) 0.33 (0.22, 0.49)	0.015	42 51	24 47	27.48 NA	25.48 14.63
ESR1 Detected Not Detected	15 280	•	0.06 (0.01, 0.46) 0.46 (0.33, 0.64)	0,163	7 86	5 66	27.48 38.89	5.69 17.62
Cell-Cycle Related Genes Detected Not Detected	104 191		0.43 (0.26, 0.7) 0.45 (0.3, 0.67)	0.726	37 56	28 43	27.65 39.91	9.01 19.23
MAPK Pathway Genes Detected Not Detected	33 262		0.22 (0.08, 0.81) 0.47 (0.34, 0.85)	0.284	11 82	7 64	32.75 38.73	10.92 17.46

Subgroup	n	n		Hazard Ratio (95% CI)	Log-rank P-value	Number	of Events	Mediar	PFS
D	etected	Not Detected		(Detected	Not Detected	Detected	Not Detected
Genomic Alteration	125	14	++-1	0.52 (0.26, 1.04)	0.059	100	9	6.71	12.95
ESR1	56	83	H	0.94 (0.64, 1.39)	0.769	43	66	6.05	8.78
РІКЗСА	48	91		0.45 (0.3, 0.67)	< 0.001	42	67	4.06	9.07
TP53	39	100	H	0.67 (0.44, 1.02)	0.062	30	79	3.72	9.01
FGFR1	31	108	•	0.51 (0.33, 0.81)	0.003	26	83	3.67	7.53
GATA3	29	110	H.	1.21 (0.77, 1.91)	0.414	24	85	8.78	6.81
WYC	28	111	*	0.27 (0.16, 0.44)	< 0.001	23	86	1.87	9.01
NF1	22	117	•	0.46 (0.28, 0.77)	0.003	19	90	3.75	8.22
EGFR	20	119	•	0.4 (0.23, 0.69)	0.001	17	92	3.52	8.78
ERBB2	17	122	+	0.59 (0.34, 1.01)	0.051	16	93	5.42	7.53
RB1	8	131	•	0.41 (0.2, 0.87)	0.016	8	101	4.87	7.53
CONE1	4	135	•	0.16 (0.06, 0.53)	~ 0.001	4	105	1.84	7.43
Cell-Cycle Related Genes	62	77	•	0.49 (0.33, 0.71)	< 0.001	50	59	3.72	9.21

Abemaciclib Benefit seen regardless of Mutations

Prognosis poorer if Mutations present

Goetz MP et al. Clin Cancer Res. 2023 Oct 27. doi: 10.1158/1078-0432.CCR-22-3573.

Targeting the Endocrine Resistance Signaling Pathway beyond CDK 4/6 inhibitors in ER+ Breast Cancer

- Endocrine Resistance is associated with either ESR1 mutations, and/or activation of cross-talk signaling pathways
- PI3K activating mutations are the most common (30-40%) finding in endocrine resistant breast cancer
- AKT activation can be caused AKT mutations, PTEN loss or upstream PI3K oncogenic mutations

ASCO Guidelines for HR+ HER2- Metastatic Breast Cancer

Endocrine Treatment and Targeted Therapy for Hormone Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Metastatic Breast Cancer: ASCO Guideline Update

Journal of Clinical Oncology®

Harold J. Burstein, MD, PhD¹; Mark R. Somerfield, PhD²; Debra L. Barton, PhD, RN³; Ali Dorris, MBA, MFA⁴; Lesley J. Fallowfield, DPhil⁵; Dharamvir Jain, MD⁶; Stephen R. D. Johnston, MD, PhD⁷; Larissa A. Korde, MD⁸; Jennifer K. Litton, MD⁹; Erin R. Macrae, MD¹⁰; Lindsay L. Peterson, MD, MSCR¹¹; Praveen Vikas, MBBS¹²; Rachel L. Yung, MD¹³; and Hope S. Rugo, MD¹⁴

PURPOSE To update recommendations of the ASCO systemic therapy for hormone receptor (HR)-positive metastatic breast cancer (MBC) guideline.

METHODS An Expert Panel conducted a systematic review to identify new, potentially practice-changing data.

RESULTS Fifty-one articles met eligibility criteria and form the evidentiary basis for the recommendations.

RECOMMENDATIONS Alpelisib in combination with endocrine therapy (ET) should be offered to postmenopausal patients, and to male patients, with HR-positive, human epidermal growth factor receptor 2 (HER2)-negative, *PIK3CA*-mutated, ABC, or MBC following prior endocrine therapy with or without a cyclin-dependent kinase (CDK) 4/ 6 inhibitor. Clinicians should use next-generation sequencing in tumor tissue or cell-free DNA in plasma to detect *PIK3CA* mutations. If no mutation is found in cell-free DNA, testing in tumor tissue, if available, should be used as this will detect a small number of additional patients with *PIK3CA* mutations. There are insufficient data at present to recommend routine testing for *ESR1* mutations to guide therapy for HR-positive, HER2-negative MBC. For *BRCA1* or *BRCA2* mutation carriers with metastatic HER2-negative breast cancer, olaparib or talazoparib should be offered in the 1st-line through 3rd-line setting. A nonsteroidal aromatase inhibitor (AI) and a CDK4/6 inhibitor should be offered to postmenopausal women with treatment-naïve HR-positive MBC. Fulvestrant and a CDK4/6 inhibitor should be offered to patients with progressive disease during treatment with AIs (or who develop a recurrence within 1 year of adjuvant AI therapy) with or without one line of prior chemotherapy for metastatic disease, or as first-line therapy. Treatment should be limited to those without prior exposure to CDK4/6 inhibitors in the metastatic setting.

Insufficient data for routine ESR1 mutation testing?

Additional information can be found at www.asco.org/breast-cancer-guidelines.

J Clin Oncol 00. © 2021 by American Society of Clinical Oncology

Burstein HJ et al, J. Clin. Oncol. 2021;39(35):3959-3977.

Stephen R D Johnston

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Capivasertib in Advanced ER+ Breast Cancer: FAKTION Trial

- >50% of ER+ MBC tumours have activated PI3K/AKT/PTEN pathway
- Capivasertib is a potent and selective inhibitor of all 3 isoforms of AKT
- In Phase II FAKTION trail, addition of capivasertib to fulvestrant doubled median PFS (10.3 vs 4.8 mo, HR 0.58)

Figure 2: Progression-free survival HR=hazard ratio.

- Benefit appeared independent of activated pathway, albeit only tested for limited *PIK3CA* mutations by ddPCR and PTEN protein loss by IHC
- AKT1 not examined

Jones RL et al, Lancet Oncol 2020;21:345-57.

Stephen R D Johnston

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Capivasertib in Advanced ER+ Breast Cancer: FAKTION Trial

- Updated efficacy data after median 60 months follow-up
- Expanded NGS testing used to identify AKT1 E17K mutation, additional activating PIK3CA mutations, and PTEN alterations predicted to result in loss of function
- PI3K/AKT/PTEN alterations found in 54% of participants in ITT population (vs 42% using original ddPCR / IHC methods)
- PFS and OS data indicated that capivasertib mainly benefited the pathway alerted subgroup
 - median PFS 12.8 mo vs 4.6 mo (HR 0.44; p = 0.0014)
 - median OS 39.8 mo vs 20.0 mo (HR 0.46; p = 0.005)
- Results of Phase III CAPitello-291 trial (NCT04305496) awaited

FAKTION: PFS in the expanded pathway altered and pathway non-altered subgroups

FAKTION: OS in the expanded pathway altered and pathway non-altered subgroups

Howell S et al, Lancet Oncol 2022; online June 4th.

Stephen R D Johnston

ORIGINAL ARTICLE

Capivasertib in Hormone Receptor-Positive Advanced Breast Cancer

N.C. Turner, M. Oliveira, S.J. Howell, F. Dalenc, J. Cortes, H.L. Gomez Moreno, X. Hu, K. Jhaveri, P. Krivorotko, S. Loibl, S. Morales Murillo, M. Okera, Y.H. Park, J. Sohn, M. Toi, E. Tokunaga, S. Yousef, L. Zhukova, E.C. de Bruin, L. Grinsted, G. Schiavon, A. Foxley, and H.S. Rugo, for the CAPItello-291 Study Group*

➡ Capivasertib	400 mg twice daily, 4 days on, 3 days off					
Fulvestrant	500 mg: cycle 1, days 1 & 15; then every 4 weeks					
 Stratification factors: Liver metastases (yes/no) Prior CDK4/6 inhibitor (yes/no) Region* 						
► Placebo	Twice daily, 4 days on, 3 days off					
Fulvestrant	500 mg: cycle 1, days 1 & 15; then every 4 weeks					

The median duration of follow-up for the primary analysis of progression-free survival in the overall population was 13.0 months (range, 0.0 to 25.0) in the capivasertib-fulvestrant group and 12.7 months (range, 0.0 to 22.3) in the placebo-fulvestrant group. Patients in the AKT pathway-altered population were those with a *PIK3CA*, *AKT1*, or *PTEN* alteration in tumor. The hazard ratio was estimated with the use of the Cox proportional-hazards model with stratification according to the presence or absence of liver metastases, previous use of an inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6; yes or no), and geographic region in the overall population and according to the presence or absence of liver metastases and previous CDK4/6 inhibitor use in the population of patients with AKT pathway-altered tumors. Tick marks indicate censored data.

Turner N et al, NEJM 2023

Progress in Inhibiting PI3K!

- **PI3K***α* is the most important isoform as an oncogenic targetv
- **Therapeutic index** needs to be improved for better safety, combinability, and efficacy

Can we improve therapeutic targeting by triplet therapy?

Miller TW et al. Cancer Discov 2011; 1(4): 338-351; Vora SR et al. Cancer Cell 2014; 26(1): 136-149.

Inavolisib: Highly Potent & Selective PI3Kα Inhibitor that Facilitates Specific Degradation of Mutated PI3Kα

Inavolisib potently inhibits mutant PI3K pathway signaling and cell viability through unique HER2dependent mutant p110a degradation resulting in prolonged pathway suppression.

* Adapted from Song et al, Cancer Discovery 2022; Edgar et al, AACR 2017

Slide Courtesy of Hope Rugo

Testing for *ESR1* Mutations to Guide Therapy for Hormone Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Metastatic Breast Cancer: ASCO Guideline Rapid Recommendation Update

Asco rapid

recommendations

Harold J. Burstein, MD, PhD¹; Angela DeMichele, MD²; Mark R. Somerfield, PhD³; and N. Lynn Henry, MD, PhD⁴; for the Biomarker Testing and Endocrine and Targeted Therapy in Metastatic Breast Cancer Expert Panels

ASCO Rapid Recommendations Updates highlight revisions to select ASCO guideline recommendations as a response to the emergence of new and practice-changing data. The rapid updates are supported by an evidence review and follow the guideline development processes outlined in the ASCO Guideline Methodology Manual. The goal of these articles is to disseminate updated recommendations, in a timely manner, to better inform health practitioners and the public on the best available cancer care options. See the Appendix for disclaimers and other important information (Appendix 1 and Appendix 2, online only).

Selective Estrogen Receptor Downregulators / Degraders (SERDs): ER destabilization follows ER inhibition

Antagonist/ Mechanism of Action "SERD" ER antagonist outcompetes E2 ER immobilization; transcription Immobilization causes ubiquitination... nd increased **ER turnover**

Adapted from Ciara Metcalfe SABCS 2018

Elacestrant (RAD1901) is an oral SERD with a distinct chemical structure

Bihani et al. Clin Cancer Res 2017

Elacestrant demonstrated greater anti-tumor activity than fulvestrant in PDX models regardless of ESR1 mutational status

Patel et al. SABCS 2018
AZD9496: An oral estrogen receptor inhibitor that blocks growth of ER+ and *ESR1* mutant breast tumors in pre-clinical models

In-vitro binding to ERa mutant LBDs

	ERa LBD	ERα LBD binding IC50 nM		
	AZD9496 nM	Fulvestrant nM		
wt	0.2	1.6		
D538G	0.5	3.3		
Y537S	0.6	3.8		

Tumor Regressions in ESR1 Mutant MCF-7 Xenograft Models

Weir HM et al. Cancer Res 2016 76; 3307-18

Several Novel Endocrine Agents in Development^{1,2}

Ultimate goal: downregulate ERa with an agent that has an optimal therapeutic index and improved efficacy

1. McDonnell DP et al. J Clin Oncol. 2021;39:1383-1388 2. Ferraro E et al. Cancer Treat Rev. 2022;109:102432.

Biomarker driven selection of ET backbone in 1L ET + CDK4/6i therapy for HR+ MBC: PADA-1

Study design: PAlbociclib & ctDNA for ESR1_{mut} detection (PADA-1)

Median FU in step #2: 26 months (range: 0-36m); N=136 PFS events

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

TACKLING ENDOCRINE RESISTANCE IN METASTATIC BREAST CANCER (MBC)

Current Questions in Clinical Practice

- 1. What is Endocrine Resistance ?
 - ESMO definitions
 - What are the Key Mechanisms for Endocrine Resistance ?

2. How to select Endocrine Treatment (ET) options for Endocrine Resistance in ER+ MBC?

- How to overcome Primary (De-Novo) Endocrine Resistance in 1st-line setting ?
- Mutation testing in 2nd line setting when and how to test ?

3. Current Research: Testing Emerging Treatments for Endocrine Resistance in Breast Cancer ?

- Lessons from Pre-surgical Clinical Models to identify Biomarkers of Endocrine Resistance

ESMO DEEP DIVE: BREAST CANCER

ESMO WEBINAR SERIES

Improving Endocrine Responsiveness in ER+ Early Breast Cancer

Role of Dynamic Ki-67 as Biomarker of Endocrine Response

- Measure impact of adding Targeted Agent on Eindependent Ki67 (ie. de-novo or acquired endocrine resistance)
- Detect biomarkers for resistance / response

Dowsett et al JNCI 2007 99; 167

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Predicting endocrine resistance in ER+ primary breast cancer

Robertson et al., SABCS 2017 & Smith et al., Lancet Oncol. Nov 2020

Predicting endocrine resistance in ER+ primary breast cancer

Robertson et al., SABCS 2017 & Smith et al., Lancet Oncol. Nov 2020

nature communications

Article

Molecular profiling of aromatase inhibitor sensitive and resistant ER+HER2postmenopausal breast cancers

<u>Co-primary analyses:</u> (i) comparison of recurrence-free survival between randomized groups (ii) comparison of prognostic importance of Ki67 at baseline and 2 weeks in Al-treated group

POETIC Bookend Study Top15% of Poor Responders vs Good Responders

Poor

Good

Poor Responders (PRs) to AI have low ESR1 expression & non-Luminal Subtype

Good Responders (GRs) and PRs with high *ESR1* expression have similar percentage of LumA/B subtypes, suggesting poorer prognosis of LumB subtypes might not be related to response to AI

Estradiol (E2) levels are lower in Poor Responders with ESR1^{HIGH}

E2 levels correlate with expression of estrogen regulated genes

Schuster, E.F. et al. Nat Comm 14, 4017 (2023)

Tumor infiltrating lymphocytes (TILs) & TP53 mutations higher in **Poor Responders to Als**

Schuster, E.F. et al. Nat Comm 14, 4017 (2023)

POETIC-A: Pre-Operative Endocrine Therapy for Individualised Care - Adjuvant

ADAPT^{cycle} - study design

Harbeck N, et al. J Clin Oncol 2020 38, no. 15_suppl. # TPS601

Randomised Phase II Neo-adjuvant Study (PALLET) (RMH/ICR-CTSU and NSABP)

Neo-adjuvant CDK 4/6 Inhibitor Therapy (PALLET Trial): Co-primary Endpoints: Anti-Proliferative (Ki-67) & Clinical Response

Complete Cell Cycle Arrest (CCCA) at 14 week:

Letrozole + Palbociclib

pCR Rate Letrozole alone = 3% Letrozole + Palbo = 3%

Palbo + Let 90% Let alone 59% (p<0.001)

Johnston S et al. J Clin Oncol. 2019 Jan 20;37(3):178-189.

Biomarkers of resistance to Palbociclib in ER+ primary breast cancer in the PALLET trial

PALBOCICLIB resistance was associated with:

CCCA = complete cell cycle arrest non-CCCA = non complete cell cycle arrest

- higher baseline Ki67 and proliferation gene expression
- higher expression of cyclin-E1, CDK2 and genes related with E2F transcription/ regulation, MYC signaling, interferon response and mTOR signaling

Schuster EF et al. SABCS 2020 PS5-01

CDK4/6 Resistance: Re-wiring of cell signalling pathways

TACKLING ENDOCRINE RESISTANCE IN METASTATIC BREAST CANCER (MBC)

Take Home Messages

1. Endocrine Resistance

- De-Novo in 10-15% 1st-line Endocrine Naïve MBC more likely Basal / HER2-E subtypes
- Somatic Mutations vary in frequency, & not predictive (except *PIK3CA*) of resistance to CDK 4/6 inhibitors

2. Acquired Endocrine Resistance occurs eventually in almost all ER+ MBC

- ESR1 mutations most common, often mutually exclusive to Akt/PIK3CA pathway alterations
- Biomarker testing in tumour / plasma now recommended in 2nd-line to select therapies
- Acquired HER2-low a very common finding therapies cannot prevent it, but ADCs may target it (new paradigm)

3. Pre-op Therapy model can find new Biomarkers of Endocrine Resistance in Breast Cancer

- Dynamic Ki-67 as predictor of endocrine resistance, allowing potentially better selection of therapies
- Deep-dive genomic & transcriptomic analyses showing immune signatures as possible endocrine resistance signal

ESMO DEEP DIVE: BREAST CANCER

ESMO WEBINAR SERIES

ESMO DEEP DIVE: BREAST CANCER

Acknowledgements for Slides

Gene Schuster, Aleix Prat, Nick Turner, Peter Schmid, Nadia Harbeck

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

ESMO DEEP DIVE: BREAST CANCER

ER+ METASTATIC BREAST CANCER BREAKTHROUGH RESEARCH ON THE ROLE OF LIQUID BIOPSY AND MOLECULAR ANALYSIS

Francois-Clement Bidard Institut Curie, FR

ESMO WEBINAR SERIES

Research fundings

GE Healthcare, Pfizer, Prolynx, Menarini Silicon Biosystems, Merck KGaA, MSD, Novartis, Personalis, Pfizer, Roche, SAGA Diagnostics, Tempus

Advisory boards

AstraZeneca, Daiichi-Sankyo, Exact Sciences, GE Healthcare, Gilead, Inatherys, Lilly, Menarini/Stemline, Novartis, Pfizer, Roche, SAGA Diagnostics

Speaker

AstraZeneca, Daiichi-Sankyo, Lilly, Menarini/Stemline, Pfizer

Travel support

AstraZeneca, Daiichi-Sankyo, Pfizer, Novartis

HR+ mBC: MAJOR CHANGES AHEAD !

Current 2nd line options

N=2 radiologically significant tumor growths +/- appearance of new metastatic sites

No clinical utility data available for RECIST-based management

ESMO WEBINAR SERIES

HR+ mBC: MAJOR CHANGES AHEAD !

Current 2nd line options

HR+ mBC: MAJOR CHANGES AHEAD !

Current 2nd line options

ESMO WEBINAR SERIES

10 DEEP DIVE: BREAST CANCER

1st line, endocrine sensitive

Current 2nd line options

ESMO WEBINAR SERIES

EARLY RESISTANCE DETECTION - HISTORY

No. at risk Arm C1

Arm C2

64

59

47

44

30

31

18

18

10

3 2

Smerage JCO

ESMO WEBINAR SERIES

Francois-Clement Bidard

ESMO DEEP DIVE: BREAST CANCER

EARLY RESISTANCE DETECTION - HISTORY

12

30

31

6

47

44

18

18

18

24

10

Time Since Random Assignment (months)

30

0

64

59

No. at risk

Arm C1

Arm C2

36

ESMO WEBINAR SERIES

Smerage JCO

42

48

Failure to show clinical utility

- No change in mechanism of action (in a population selected to be chemoresistant)
- Short lead time between CTC assessment & standard CT

ESMO DEEP DIVE: BREAST CANCER

EARLY RESISTANCE DETECTION – SAFIR03

F André, ESMO breast 2024

ESMO DEEP DIVE: BREAST CANCER

LATE / ACQUIRED RESISTANCE – PADA-1

PADA-1

 Strategy: to target rising bESR1_{mut} when they become detectable during 1L treatment with AI+Palbociclib (PAL) ^[1]

ESMO WEBINAR SERIES

LATE / ACQUIRED RESISTANCE – PADA-1

PFS1 From Randomization

	FUL + PAL	AI + PAL
mPFS (95% Cl), mo	12.8 (9.3, 14.7)	5.8 (3.9, 7.5)
Hazard ratio (95% CI)	0.54 (0.38, 0.75)	

FC Bidard, Lancet Oncol 2022

PFS2 From Randomization

	FUL + PAL	AI + PAL
mPFS2 (95% Cl), mo	29.4 (21.9, NR)	14.0 (11.0, 18.6)
Hazard ratio (95% CI)	0.37 (0.24, 0.56)	

FC Bidard, ASCO 2023

Francois-Clement Bidard

ESMO DEEP DIVE: BREAST CANCER

LATE / ACQUIRED RESISTANCE – SERENA-6

Turner (...) Bidard, Future Oncol 2023 ESMO WEBINAR SERIES

ESMO DEEP DIVE: BREAST CANCER Francois-Clement Bidard

Current 2nd line options

TRIALS & CONCEPTS

Current 2nd line options

Francois-Clement Bidard

• FDA cleared for clinical use

"for the detection of ER-positive lesions as an adjunct to biopsy in patients with recurrent or mBC."

• EMA cleared / Approved for reimbursement in France

"in patients with initially ER+ mBC with early relapse after endocrine therapy, when biopsy is deemed impossible and hormone therapy is an option".

• Performances investigated since >15 years - now marketed by GE Healthcare

FLUORO-ESTRADIOL PET/CT

original reports

Clinical Validity of 16α-[¹⁸F] Fluoro-17β-Estradiol Positron Emission Tomography/Computed Tomography to Assess Estrogen Receptor Status in Newly Diagnosed Metastatic Breast Cancer

Jasper J.L. van Geel, MD¹; Jorianne Boers, MD¹; Sjoerd G. Elias, MD. PhD²; Andor W.J.M. Glaudemans, MD. PhD³; Erik F.J. de Vries, PhD³; Geke A.P. Hospers, MD, PhD¹; Michel van Kruchten, MD, PhD¹; Evelien J.M. Kuip, MD, PhD⁴; Agnes Jager, MD, PhD⁵; Willemien C. Menke-van der Houven van Oordt, MD, PhD⁵; Bert van der Vegt, MD, PhD⁷; Elisabeth G.E. de Vries, MD, PhD¹; and Carolina P. Schröder, MD, PhD⁶ on behalf of the IMPACT-Metastatic Breast Consortium

Participants (n = 181)

FR IHC Status of the Bionsied Lesion

	En mo otatas si the Diopsied Lesion			
Result	Positive ($n = 132$)	Negative ($n = 49$)		
Whole-body [18F]FES-PET result				
Positive (n = 135)	125	10		
Negative (n $=$ 46)	7	39		
Sensitivity	95 (89 to 97)			
Specificity	80 (66 to 89)			
PPV	93 (87 to 96)			
NPV	85 (72 to 92)			

→ should detect accurately the ~15-20% of mBC pts with ER loss at time of progression

ESMO DEEP DIVE: BREAST CANCER

Francois-Clement Bidard

POST-CDK4/6I, SINGLE AGENT ENDOCRINE T.: EMERALD

All Patients (ITT)

Bidard FC, et al, J Clin Oncol, 2022

CIRCULATING TUMOR CELLS – STIC TRIAL

In patients eligible to 1st line endocrine therapy (by investigator) AND a high CTC count Both PFS and OS were very significantly improved when randomized to chemotherapy

Bidard FC, et al, JAMA Oncol, 2021

Bidard FC, et al, J Clin Oncol, 2023

ESMO WEBINAR SERIES

Francois-Clement Bidard

• N=300 ER+ HER2- mBC pts

- Received AI+CDK4/6i for >6 months
- No prior chemotherapy for mBC

• No visceral crisis

• Eligible for 2nd line endocrine therapy

NCT06195709

Bidard FC et al., TiP ASCO 2024

ESMO DEEP DIVE: BREAST CANCER

Francois-Clement Bidard

- N=300 ER+ HER2- mBC pts
- Received AI+CDK4/6i for >6 months
- No prior chemotherapy for mBC
- No visceral crisis

Predictive

• Eligible for 2nd line endocrine therapy

High FES uptake

¹⁸F-FES PET/CT

- in all tumor sites
- in most tumor sites & sites with low
- FES uptake amenable to local therapy

Low FES uptake

- in ≥3 tumor sites
- not amenable to local therapy

Bidard FC et al., TiP ASCO 2024

Biomarker workup

ESMO DEEP DIVE: BREAST CANCER

Francois-Clement Bidard

Bidard FC et al., TiP ASCO 2024

ESMO WEBINAR SERIES

Francois-Clement Bidard

ESMO DEEP DIVE: BREAST CANCER

Bidard FC et al., TiP ASCO 2024

Allocated type of therapy

Arm A (N=142) 2nd line ET (SoC, physician choice) +/- local treatment of sites

with low FES SUV

ESMO DEEP DIVE: BREAST CANCER

Francois-Clement Bidard

ESMO WEBINAR SERIES

institut

NCT06195709

Francois-Clement Bidard

ESMO DEEP DIVE: BREAST CANCER

WHAT (A CLOSE) FUTURE MIGHT LOOK LIKE ?

Francois-Clement Bidard

Thank you !

Questions/collaborations: francois-clement.bidard@curie.fr

٠

WHAT TO DO WITH ENDOCRINE REFRACTORY PATIENTS? CURRENT CONCEPTS AND ONGOING RESEARCH

Alessandra Gennari, MD PhD

Dept of Traslational Medicine - University of Piemonte Orientale

Head, Division of Oncology - Maggiore University Hospital, Novara, Italy

DECLARATION OF INTERESTS

- Consultancy/advisory role/speaker bureau: Astra Zeneca, Daichii-Sankyo, Eisai, Exact Sciences, Gentili, Gilead, MSD, Pfizer, Novartis, Organon, Seagen, Lilly, Roche
- Non profit research support: AIRC, Italian Association for Cancer Research, MIUR Dept of Excellence, LILT Novara, University of Piemonte Orientale, Italian Ministry of Health, EraNET Transcan
- Scientific Board in IBCSG; Membership/affiliation: LILT

DEFINITION OF ENDOCRINE SENSITIVITY/RESISTANCE

Relapse at least 12 months after the completion of adjuvant endocrine therapy or patients not treated for advanced disease

Relapse within 24 months while the patient was receiving adjuvant endocrine therapy or progression within 6 months while the patient was receiving endocrine therapy for advanced disease

Relapse after at least 24 months of adjuvant endocrine therapy and within 12 months after ending adjuvant endocrine therapy, or progression after at least 6 months of endocrine therapy for advanced disease

Cardoso F, et al. Ann Oncol 2018

ESMO DEEP DIVE: BREAST CANCER

6TH AND 7TH INTERNATIONAL CONSENSUS GUIDELINES FOR THE MANAGEMENT OF ADVANCED BREAST CANCER (ABC GUIDELINES 6 AND 7)

	Endocrine sensitivity/resistance	Expert opinion/NA	95%
	ET NAÏVE: unknown if there is sensitivity or resistance to endocrine therapy (ET) since has never received ET.		
	PRIMARY ENDOCRINE RESISTANCE is defined as: Relapse while on the first 2 years of adjuvant ET, or PD within		
	first 6 months of 1 st line ET-based therapy for ABC (note: this definition is the same regardless of whether therapy		
\rightarrow	included a CDK4/6i or not).		
	SECONDARY (ACQUIRED) ENDOCRINE RESISTANCE is defined as: All other clinical situations of endocrine-		
	resistance. Examples include:		
	1) Relapse while receiving adjuvant ET but after at least 2 years;		
	2) PD after at least 6 months of 1 st line ET-based therapy for ABC;		
	3) PD after any duration of 2 nd + line ET-based therapy for ABC;		
\Rightarrow	4) Known ESR1 mutation (note: definition unaffected by therapy with CDK4/6i, mTOR/PI3Ki, or other adjunctive		
	drugs)		
	ENDOCRINE INSENSITIVITY is defined as: PD within 2 months of later-line ET-based therapy for ABC and no		
	additional ET-based approaches likely to result in clinically meaningful benefit.		

F Cardoso et al, The Breast 2024

ESMO DEEP DIVE: BREAST CANCER

RESISTANCE TO ENDOCRINE THERAPY CAN BE CLASSIFIED BY CLINICAL AND MOLECULAR VARIABLES

1. Gennari A, et al. Ann Oncol. 2021;12:1475–1495; 2. Rasha F, et al. Mol Cell Endocrinol. 2021;532:111322; 3. Patel R, et al. NPJ Breast Cancer. 2023;9:20; 4. Rani A, et al. Front Endocrinol (Lausanne) 2019;10:245; 5. Xu P, et al. Acta Pharmacol Sin 2021;42:171–178; 6. Brett JO, Breast Cancer Res. 2021;23(1):85

ESMO DEEP DIVE: BREAST CANCER

ESMO WEBINAR SERIES

- 18F-FES PET/CT has been recommended as a predictive diagnostic marker of endocrine sensitivity in patients treated with endocrine therapy.
- Tumor ce
- Retrospective evidence suggests a link between 18F-FES PET/CT uptake (SUV) and the presence and performance of ER in BC tissues.

Approved by FDA in 2023

ESMO DEEP DIVE: BREAST CANCER

- PET technology combined with CT scans is a potent approach for determining the stage of breast cancer and its response to treatment.

- 18F-fluoroestradiol Positron Emission Tomography (18F-FES PET/CT), have been proposed as whole-body imaging to assess overall ER expression at different metastatic sites.

18F-FES PET/CT

Van Kruchten et al, Lancet Oncol 2013

ESMO DEEP DIVE: BREAST CANCER

FES-PET IDENTIFIES ER+ LESIONS

FES uptake related to ER expression

in MBC pts with ER+ primary (n=33):

- more lesions (n=398) than on conventional imaging (n=319)
- change in therapy (48%)

Β.

Α.

ET-FES TRIAL DESIGN ERA-NET TRANSCAN JTC 2011

A Gennari et al, Ann Oncol 2024

ESMO DEEP DIVE: BREAST CANCER

RESULTS

Patients characteristics	Registered (n=113)	ARM A (n=13)	ARM B (n=16)	Total (n=142)
Median age (range) – yrs	66 (36-90)	60 (38-79)	62 (38-87)	65 (36-90)
Menopausal status – no. (%)				
Pre/peri-menopausal	14 (12.4)	2 (15.4)	5 (31.3)	21 (14.8)
Post-menopausal	98 (86.7)	11 (84.6)	11 (68.8)	120 (84.5)
ECOG Performance Status - no. (%)			
0	89 (78.8)	10 (76.9)	14 (87.5)	113 (79.6)
1	24 (21.2)	3 (23.1)	2 (12.5)	29 (20.4)
Hormone receptors status – no. (%	ó)			
ER > 50%	100 (88.5)	13 (100.0)	15 (93.7)	128 (90.1)
Disease-free interval – no. (%)				1
DFI $\leq 24 \mod$	11 (9.7)	1 (7.7)	1 (6.3)	13 (9.2)
DFI > 24 mos	75 (66.4)	9 (69.2)	14 (87.5)	98 (69.0)
Metastatic ab initio	27 (23.9)	3 (23.1)	1 (6.2)	31 (21.8)
Previous treatment – no. (%)			1	1
Prior Neoadjuvant/Adiuvant CT	68 (60.2)	9 (69.2)	11 (68.8)	88 (62.0)
Prior adjuvant ET	78 (69.0)	8 (61.5)	13 (81.3)	99 (69.7)
Site of metastases – no. (%)			b	
Bone only	41 (36.3)	4 (30.8)	5 (31.3)	50 (35.2)
Bone + other	31 (27.4)	3 (23.1)	0 (0.0)	34 (23.9)
Visceral any	38 (33.6)	5 (38.5)	6 (37.5)	49 (34.5)
Soft tissue any	37 (32.7)	5 (38.5)	6 (37.5)	48 (33.8)
Other	8 (7.1)	1 (7.7)	1 (6.3)	10 (7.0)

A Gennari et al, Ann Oncol 2024

ESMO DEEP DIVE: BREAST CANCER

18E_FEC CUV/2

PROGRESSION FREE SURVIVAL

		101 -1 12	5507 2
	18F-FES SUV≥2	Arm A	Arm B
Median PFS, months	18.0	12.4	23.0
(range) (95%CI)	(11.2-23.1)	(3.1-59.6)	(7.7-30.0)
HR (95%CI)		0.71 (0.	29-1.72)

A Gennari et al, Ann Oncol 2024

ESMO DEEP DIVE: BREAST CANCER

OVERALL SURVIVAL

		18F-FES SUV<2	
	18F-FES SUV≥2	Arm A	Arm B
Median OS, months	Not reached	28.2	52.8
(range) (95%CI)		(14.2-NE)	(16.2-NE)
HR (95%CI)		0.97 (0.	31-3.09)

A Gennari et al, Ann Oncol 2024 **ESMO DEEP DIVE: BREAST CANCER**

HETEROGENEITY BETWEEN 18F-FES AND 18F-FDG IN ET-FES STUDY

	X
	\checkmark

PTS INCLUDED IN THE ANALYSIS	N° Pts	%
Group A 18F-FES & 18F-FDG ALL LESIONS 18F-FES POSITIVE	53/79	67.1%
Group B 18F-FES & 18F-FDG 50% OF LESIONS 18F-FES POSITIVE	11/79	13.9%
Group C 18F-FES & 18F-FDG 25% OF LESIONS 18F-FES POSITIVE	5/79	6.3%
Group D 18F-FES & 18F-FDG ALL LESIONS 18F-FES NEGATIVE	10/79	12.7%

Overall, 26/79 (33%) patients, with ER+ MBC had heterogeneous 18F-FES SUV uptake

A Gennari et al, presented at ESMO 2017

GROUP C

The use of ET in discordant cases (B/C/D) was associated with a 79% increase in the risk of PD

ESMO DEEP DIVE: BREAST CANCER

ESMO SCALE FOR ACTIONABILITY OF MOLECULAR TARGETS - ESCAT

Gene or protein	Alteration	Prevalence	ESCAT score
ER	Protein expression ≥ 1% by IHC ESR1 mutation	75% 40%	NA II-A
ERBB2	Amplifications or 3+ (IHC) HER2-low (IHC (1+, 2+ NA)	15%-20% 40%-50%	I-A II-B IA/IIA
	Hotspot mutations	4%	II-B
	Germline mutations	4%	I-A
DRUA I/2	Somatic mutations	3%	II-A
PALB2	Germline mutations	1%	II-A
PD-L1 (TNBC) Expression by IHC on ICs and tumour cells (CPS)		40%	I-A
PIK3CA (ER+, HER2-)	Hotspot mutations	30%-40%	I-A
MSI	MSI-H	1%-2%	I-C
NTRK	Fusions	<0.1%	I-C
ESR1 (ER+, HER2-)	Mutations (mechanism of resistance)	30%	II-A
AR (TNBC)	AR expression (not validated)	?	II-B
AKT1 ^{E17K}	Mutations	5%	II-B

ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT) ESMO DEEP DIVE: BREAST CANCER

ENDOCRINE RESISTANT DISEASE: 1ST LINE

ESMO DEEP DIVE: BREAST CANCER

HR+ HER2- METASTATIC BREAST CANCER

Consistent PFS benefit in 2nd line for CDK 4/6i + fulvestrant

PALOMA-3

MONALEESA-3

MONARCH-2

Turner N, et al. NEJM 2018; Slamon D, et al JCO 2018; Sledge GW, et al JCO 2017

ESMO DEEP DIVE: BREAST CANCER

OLYMPIAD AND EMBRACA: PARP VS CT IN MBC

Robson M, et al. N Engl J Med. 2017; Litton J, et al. N Engl J Med. 2018

ESMO DEEP DIVE: BREAST CANCER

SOLAR-1: A PHASE III RANDOMIZED TRIAL OF ALPELISIB + FULVESTRANT IN PATIENTS WITH HR+/HER2- MBC PRETREATED WITH ET

Andrè et al, NEJM 2019

ESMO DEEP DIVE: BREAST CANCER

SOLAR-1: Results – ESCAT IA

Data cut-off: Jun 12, 2018	Alpelisib + Placeb fulvestrant fulvest (N=169) (N=17		
Number of PFS events, n (%)	103 (60.9)	129 (75.0)	
Median PFS	11.0	5.7	
(95% CI)	(7.5–14.5)	(3.7–7.4)	
HR (95% CI)	0.65 (0.50-0.85)		
p-value	0.00065		

Treatment with alpelisib–fulvestrant prolonged progression-free survival among patients with *PIK3CA*-mutated, HR-positive, HER2-negative advanced breast cancer who had received endocrine therapy previously

INAVO120: 1L inavolisib + palbociclib + fulvestrant in patients with PIK3CAm, HR+/HER2- mBC

Stratification factors:

- Visceral Disease (Yes vs. No)
- Endocrine Resistance (Primary vs. Secondary)[†]
- Region (North America/Western Europe; Asia; Other)

https://clinicaltrials.gov/ct2/show/NCT04191499

Endpoints

- Primary: PFS by Investigator
- Secondary: OS[‡], ORR, BOR, CBR, DOR, PROs

ESMO WEBINAR SERIES

ESMO DEEP DIVE: BREAST CANCER

INAVO120: Primary endpoint PFS (investigator assessed)

CCOD: 29th September 2023

CI, confidence interval; Fulv, fulvestrant; Inavo, inavolisib; mo, months; Palbo, palbociclib; Pbo, placebo; PFS, progression-free survival.

Jhaveri KL et al., SABCS 2023

ESMO DEEP DIVE: BREAST CANCER

INAVO120: Adverse events (any grade AEs ≥ 20 % incidence in either group)

Adverse Events	Inavo+Palbo+Fulv (N=162)		Pbo+Palbo+Fulv (N=162)	
	All Grades	Grade 3–4	All Grades	Grade 3–4
Neutropenia	144 (88.9%)	130 (80.2%)	147 (90.7%)	127 (78.4%)
Thrombocytopenia	78 (48.1%)	23 (14.2%)	73 (45.1%)	7 (4.3%)
Stomatitis/Mucosal inflammation	83 (51.2%)	9 (5.6%)	43 (26.5%)	0
Anemia	60 (37.0%)	10 (6.2%)	59 (36.4%)	3 (1.9%)
Hyperglycemia	95 (58.6%)	9 (5.6%)	14 (8.6%)	0
Diarrhea	78 (48.1%)	6 (3.7%)	26 (16.0%)	0
Nausea	45 (27.8%)	1 (0.6%)	27 (16.7%)	0
Rash	41 (25.3%)	0	28 (17.3%)	0
Decreased Appetite	38 (23.5%)	<2%	14 (8.6%)	<2%
Fatigue	38 (23.5%)	<2%	21 (13.0%)	<2%
COVID-19	37 (22.8%)	<2%	17 (10.5%)	<2%
Headache	34 (21.0%)	<2%	22 (13.6%)	<2%
Leukopenia	28 (17.3%)	11 (6.8%)	40 (24.7%)	17 (10.5%)
Ocular Toxicities	36 (22.2%)	0	21 (13.0%)	0

Key AEs are shown in **bold.** AES were assessed per CTCAE V5. Neutropenia, thrombocytopenia, stomatitis/mucosal inflammation, anemia, hyperglycemia, diarrhea, nausea and rash were assessed as medical concepts using grouped terms

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Fulv, fulvestrant; Inavo, inavolisib; Palbo, palbociclib; Pbo, placebo.

Jhaveri KL et al., SABCS 2023

ESMO DEEP DIVE: BREAST CANCER

- · Men and pre-/post-menopausal women
- Recurrence or progression while on or <12 months from end of adjuvant AI, or progression while on prior AI for ABC
- ≤2 lines of prior endocrine therapy for ABC
- ≤1 line of chemotherapy for ABC
- Prior CDK4/6 inhibitors allowed (at least 51% required)
- No prior SERD, mTOR inhibitor, PI3K inhibitor, or AKT inhibitor
- HbA1c <8.0% (63.9 mmol/mol) and diabetes not requiring insulin allowed
- FFPE tumor sample from the primary/recurrent cancer available for retrospective central molecular testing

https://classic.clinicaltrials.gov/ct2/show/NCT04305496

Dual primary endpoints

PFS by investigator assessment

- Overall
- AKT pathway-altered tumors (≥1 qualifying *PIK3CA*, *AKT1*, or *PTEN* alteration)

Key secondary endpoints

Overall survival

- Overall
- AKT pathway-altered tumors

Objective response rate

- Overall
- AKT pathway-altered tumors

CAPITELLO-291: BASELINE AND TUMOR CHARACTERISTICS

Characteristic		Overall population		AKT pathway-altered population	
		Capivasertib + fulvestrant (N=355)	Placebo + fulvestrant (N=353)	Capivasertib + fulvestrant (N=155)	Placebo + fulvestrant (N=134)
Median age; years (ran	ige)	59 (26-84)	58 (26–90)	58 (36-84)	60 (34–90)
Female; n (%)		352 (99.2)	349 (98.9)	153 (98.7)	134 (100)
Post menopausal; n (%	o)	287 (80.8)	260 (73.7)	130 (83.9)	105 (78.4)
Race; n (%)	White Asian Black or African American Other	201 (56.6) 95 (26.8) 4 (1.1) 55 (15.5)	206 (58.4) 94 (26.6) 4 (1.1) 49 (13.9)	75 (48.4) 48 (31.0) 2 (1.3) 30 (19.4)	76 (56.7) 35 (26.1) 1 (0.7) 22 (16.4)
Region [*] ; n (%)	1 2 3	197 (55.5) 68 (19.2) 90 (25.4)	198 (56.1) 68 (19.3) 87 (24.6)	80 (51.6) 29 (18.7) 46 (29.7)	76 (56.7) 24 (17.9) 34 (25.4)
Metastatic sites; n (%)	Bone only Liver [*] Visceral	51 (14.4) 156 (43.9) 237 (66.8)	52 (14.7) 150 (42.5) 241 (68.3)	25 (16.1) 70 (45.2) 103 (66.5)	16 (11.9) 53 (39.6) 98 (73.1)
Hormone receptor status; n (%) [†]	ER+/PR+ ER+/PR- ER+/PR unknown	255 (71.8) 94 (26.5) 5 (1.4)	246 (69.7) 103 (29.2) 4 (1.1)	116 (74.8) 35 (22.6) 4 (2.6)	101 (75.4) 31 (23.1) 2 (1.5)
Endocrine resistance; n (%)	Primary Secondary	127 (35.8) 228 (64.2)	135 (38.2) 218 (61.8)	60 (38.7) 95 (61.3)	55 (41.0) 79 (59.0)

*Baseline stratification factors. [†]One patient in the capivasertib + fulvestrant group was ER negative. Region 1: United States, Canada, Western Europe, Australia, and Israel, Region 2: Latin America, Eastern Europe and Russia, Region 3: Asia. Primary and secondary resistance were defined using the 4th ESO-ESMO International Consensus Guidelines for ABC.

ESMO DEEP DIVE: BREAST CANCER

Tuner et al., NEJM 2023

CAPITELLO-291: AKT PATHWAY ALTERATIONS

Alteration; n (%) Any AKT pathway alteration		Capivasertib + fulvestrant (N=355)	Placebo + fulvestrant (N=353)	
		155 (43.7)	134 (38.0)	
Any PIK3CAAny PIK3CA only PIK3CA and AKT1 		116 (32.7) 110 (31.0) 2 (0.6) 4 (1.1)	103 (29.2) 92 (26.1) 2 (0.6) 9 (2.5)	
		18 (5.1)	15 (4.2) 16 (4.5)	
		21 (5.9)		
Non-altered		200 (56.3)	219 (62.0)	
AKT pathway alteration not detected Unknown No sample available Preanalytical failure Post analytical failure		142 (40.0) 58 (16.3) 10 (2.8) 39 (11.0) 9 (2.5)	171 (48.4) 48 (13.6) 4 (1.1) 34 (9.6) 10 (2.8)	

AKT pathway alteration status was determined centrally using next-generation sequencing in tumor tissue with the FoundationOne[®]CDx assay (and Burning Rock assay in China)

ESMO DEEP DIVE: BREAST CANCER

Tuner et al., NEJM 2023
CAPItello-291: PFS in overall and AKT pathway-altered populations

AKT pathway-altered population

ESMO DEEP DIVE: BREAST CANCER

Tuner et al., NEJM 2023

ESMO WEBINAR SERIES

CAPITELLO-291: INVESTIGATOR-ASSESSED PFS BY SUBGROUP (OVERALL POPULATION)

		Number of patients		HR (95%CI)
All patients		708	·	0.60 (0.51, 0.71)
Age	<65 years	491	·	0.65 (0.53, 0.79)
	≥65 years	217	►	– 0.65 (0.47, 0.90)
Race	Asian	189	•	• 0.62 (0.44, 0.86)
	White	407	·41	0.65 (0.52, 0.80)
	Other	112	·	— 0.63 (0.42, 0.96)
Region	1	395	F4	0.60 (0.48, 0.75)
	2	136	••	0.77 (0.51, 1.16)
	3	177	+	0.60 (0.42, 0.85)
Menopausal status (females only)	Pre/peri	154		• 0.86 (0.60, 1.20)
	Post	547	F	0.59 (0.48, 0.71)
Liver metastases	Yes	306	F	0.61 (0.48, 0.78)
	No	402		0.62 (0.49, 0.79)
Vicearal matactages	Yes	478	·+	0.69 (0.56, 0.84)
Visceral metastases	No	230	⊢	0.54 (0.39, 0.74)
Endocrine resistance	Primary	262	• • •	• 0.66 (0.50, 0.86)
	Secondary	446	·+	0.64 (0.51, 0.79)
Prior use of CDK4/6 inhibitors	Yes	496	·+	0.62 (0.51, 0.75)
	No	212	► ♦	 0.65 (0.47, 0.91)
Prior chemotherapy for ABC	Yes	129	⊢	 0.61 (0.41, 0.91)
	No	579	⊢	0.65 (0.54, 0.78)
MO DEEP DIVE: BREAS	T CANCER		0,3 0,5 Favors capivasertib + fulvestrant - Ha	1,0 2,0 azard ratio (95% CI)

SERIES

Tuner et al., NEJM 2023

CAPITELLO-291: ADVERSE EVENTS (>10% OF PATIENTS) – OVERALL POPULATION

Adverse events of any grade related to rash (group term including rash, rash macular, macula-papular rash, rash papular and rash pruritic) were reported in 38.0% of the patients in the capivasertib + fulvestrant arm (grade ≥ 3 in 12.1%) and in 7.1% of those in the placebo + fulvestrant group (grade ≥ 3 in 0.3%). *All events shown were Grade 3 except one case of Grade 4 hyperglycemia in the capivasertib + fulvestrant arm.

Adverse Events from Phase III Trials: Inavolisib, Alpelisib, Capivasertib

Patients with key AEs, [↑] %	INAVO120 ¹ Inavo + Palbociclib+ Fulvestrant (N=162)		INAVO120 ¹ Palbocilib + fulvestrant Control arm (n = 162)		SOLAR-1 ² Alpelisib + fulvestrant (n = 284)		CAPitello-291 ³ Capivasertib + fulvestrant (n = 355)	
	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3
Hyperglycemia [#]	59	6	9	0	64	33	16	2
Diarrhea	48	4	16	0	58	7	72	9
Rash	25	0	17	0	54	20	38	12
Stomatitis*	51	6	27	0	25	3	15	2
Nausea	28	1	17	0	45	3	35	1
AEs leading to study treatment discontinuation	7	N/A	1	N/A	25	N/A	13	N/A

Cross-trial comparisons should be interpreted with caution due to differences in patient populations and AE reporting.

Notes:

†For INAVO120, the key AEs were assessed as a medical concept (grouped terms),

#Eligibility varied widely between trials. For INAVO120, FBG <126 and HGBA1c <6%; For SOLAR-1, HGBA1c < 6.5%; For Capitello-291, HGBA1c <8%

*For INAVO120, stomatitis grouped term includes mucosal inflammation.

*For SOLAR-1 and CAPitello-291, stomatitis was reported as a single term; for Solar 1 mucosal inflammation was 18% for any Grade and 2% for Grade ≥3

1. Jhaveri K, et al. SABCS 2023; 2. André F, et al. N Engl J Med 2019 3. Turner NC, et al. N Engl J Med. 2023

ESMO DEEP DIVE: BREAST CANCER

ESMO WEBINAR SERIES

Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: a report from the ESMO Precision Medicine Working Group

Table 3. List of genomic alterations level I/II according to ESCAT in advanced breast cancer							
Gene	Alteration	Estimated prevalence	ESCAT score	Drug class matched	References		
ERBB2	Amplifications	15%-20%	IA	Anti-HER2 monoclonal antibodies HER2 TKIs Anti-HER2 ADCs	Baselga et al., N Engl J Med 2012 ⁵⁵ Krop et al., Lancet Oncol 2014 ⁵⁶ Lin et al., J Clin Oncol 2020 ⁵⁷ Saura et al., J Clin Oncol 2020 ⁵⁸ Rugo et al., JAMA Oncol 2021 ⁵⁹		
	Hotspot mutations	4%	IIB	Pan-HER TKIs Anti-HER2 ADCs	Hyman et al., <i>Nature</i> 2018 ⁵¹ Smyth et al., <i>Cancer Discov</i> 2020 ⁶⁰ Li et al., <i>Ann Oncol</i> 2023 ⁶¹		
РІКЗСА	Hotspot mutations	30%-40%	IA (ER-positive HER2-negative ABC)	α-specific PI3K inhibitors*	André et al., <i>N Engl J Med</i> 2019 ⁶² Rugo et al., <i>Lancet Oncol</i> 2021 ⁶³ Turner et al, <i>N Engl J Med</i> 2023 ⁷⁰		
ESR1	Mutations	30%-40%	IA (ER-positive HER2-negative ABC resistant to AI)	SERDs	Bidard et al., <i>J Clin Oncol</i> 2022 ⁶⁴ Bardia et al., <i>Cancer Res</i> 2023 ⁶⁵		
BRCA1/2	Germline pathogenic/likely pathogenic variants	4%	IA	PARP inhibitors	Litton et al., <i>N Engl J Med</i> 2018 ⁶⁶ Robson et al., <i>Eur J Cancer</i> 2023 ⁶⁷		
PTEN	Somatic mutations Mutations/deletions	3% 7%	1/11	AKT inhibitors	Schmid et al., J Clin Oncol 2020 ⁶⁹ Schmid et al., J Clin Oncol 2020 ⁶⁹ Turner et al., N Engl J Med 2023 ⁷⁰		
AKT1	Mutations (p. E17K)	5%	1/11	AKT inhibitors	Kalinsky et al., JAMA Oncol 2021 ⁷¹ Turner et al., N Engl J Med 2023 ⁷⁰		
PALB2	Germline pathogenic/likely pathogenic variants	1%	IIB	PARP inhibitors	Tung et al., <i>J Clin Oncol</i> 2020 ⁵⁸ Gruber et al., <i>Nat Cancer</i> 2022 ⁷²		

ABC, advanced breast cancer; ADCs, antibody—drug conjugates; AI, aromatase inhibitors; ER, oestrogen receptor; ESCAT, ESMO Scale for Clinical Actionability of molecular Targets; HER, human epidermal growth factor receptor; PARP, poly (ADP-ribose) polymerase; SERDs, selective oestrogen receptor degrader; TKIs, tyrosine kinase inhibitors. *AKT inhibitors have shown efficacy in patients with PIK3CA mutated ER-positive HER2-negative ABC

ESMO DEEP DIVE: BREAST CANCER

Mosele MF et al., SABCS 2022

RECOMMENDATIONS FOR THE USE OF NGS FOR PATIENTS WITH ADVANCED BREAST CANCER IN 2024

- Capivasertib plus fulvestrant approved by FDA based on PFS (HR 0.60; P < 0.001), with a slightly greater benefit in AKT-pathway alterations (HR 0.50; P < 0.001) in a randomised phase III study.
- Based on these data, the FDA approved this combination for pretreated patients with ER+/HER2- ABC with PIK3CA/AKT1/PTEN alterations.
- There is no consensus among experts regarding whether AKT1/PTEN mutations should be classified as level I or II in this patient population, given the low prevalence, and the observed benefit may predominantly arise from PIK3CA mutations.
- Nevertheless, as the determination of AKT1/PTEN alterations can provide drug access to these patients, the group recommends carrying out tumour NGS.

Mosele MF et al., SABCS 2022

PI3K/AKT

ESMO DEEP DIVE: BREAST CANCER

ESMO WEBINAR SERIES

RECOMMENDATIONS FOR THE USE OF NGS FOR PATIENTS WITH ADVANCED BREAST CANCER IN 2024

- Reclassification of ESR1 mutations to level IA,
- The NGS testing should be done after resistance to endocrine therapy to optimise the likelihood of detecting ESR1 mutations<sup>t is recommended to carry out tumour NGS of a tumour (or plasma) sample from a patient with ER+/HER2 - ABC as standard of care.
 </sup>
- Patients with high likelihood of harbouring germline BRCA1/2 mutations should undergo clinical genetic testing even if these alterations were not detected by tumour NGS.

It is recommended to carry out tumour NGS of a tumour (or plasma) sample from a patient with ER+/HER2 - ABC as standard of care

Mosele MF et al., SABCS 2022

ESMO DEEP DIVE: BREAST CANCER

Thank you!

Alessandra Gennari

alessandra.gennari@uniupo.it

@aledignus12

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

