ESMO DEEP DIVE: BREAST CANCER

BREAKTHROUGHS IN PERSONALISED, MOLECULARLY-INFORMED RISK PREDICTION, SCREENING AND EARLY DETECTION OF BREAST CANCER

Nadia Harbeck, Chair

LMU University Hospital, Munich, Germany

ESVO SCIENCE RETER NEDICINE

PROGRAMME AND SPEAKERS

5 June 2024	
5 min	Welcome and introduction
	Nadia Harbeck
25 min	Screening for breast cancer – what can we do beyond mammography
	Tanja Gagliardi
25 min	Lifestyle changes – is prevention possible?
	Suzette Delaloge
25 min	Emerging data on: How to deal with hereditary risk
	Shani Paluch-Shimon
15 min	LIVE Discussion and Q&A
	All

Nadia Harbeck Chair LMU University Hospital,

Tanja Gagliardi Speaker Royal Marsden Hospital

A

Shani Paluch-Shimon Speaker Hadassah University Hospital

Suzette Delaloge Speaker Gustave Roussy, Villejuif

ESMO WEBINAR SERIES

ESMO DEEP DIVE: BREAST CANCER

LEARNING OBJECTIVES

- To acquire a deeper understanding of the clinical course of breast cancer.
- To understand biological hypotheses on classification and risk stratification, ongoing/required research in therapeutics and knowledge of use of omics technologies for biomarker-enabled precision medicine for breast cancer.
- To develop skills and abilities for critical analysis, interpretation of research data and therapeutic strategies.
- To become better equipped for informed, innovative thinking and engagement in ongoing or new research projects.

THANK YOU FOR YOUR ATTENTION

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

SCREENING FOR BREAST CANCER

What can we do beyond mammography ?

Dr. Tanja Gagliardi

Consultant Radiologist

Royal Marsden Hospital, London, UK

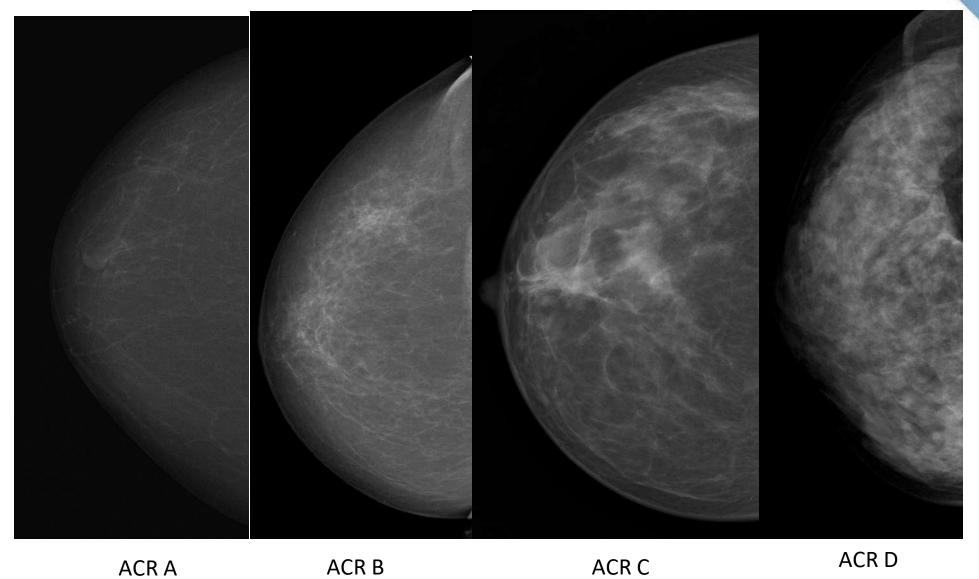
? SCREENING

Basic characteristics of a screening test - Mammography

- Find disease (BC) when small, not causing symptoms, less likely to have spread beyond the local tumour
- quickly and easily applied
- . cost effective (cheap)
- widely available
- detects disease early and reduces ultimately disease related mortality
- . Mammography
- proven to reduce mortality 20% over last 30 years, **based on age only** and related incidence

Population Based Screening vs Opportunistic Screening

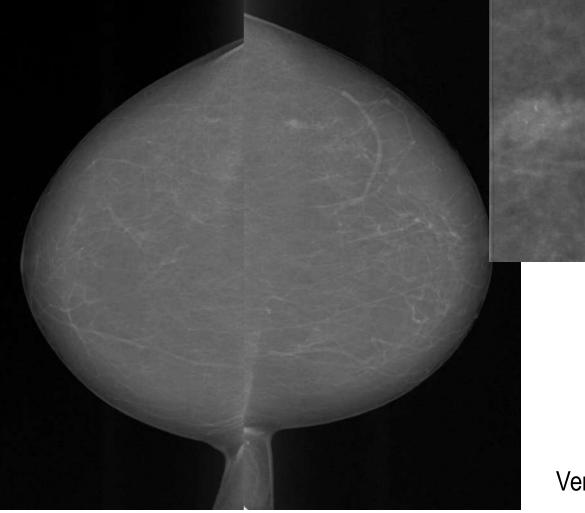
ESMO DEEP DIVE: BREAST CANCER

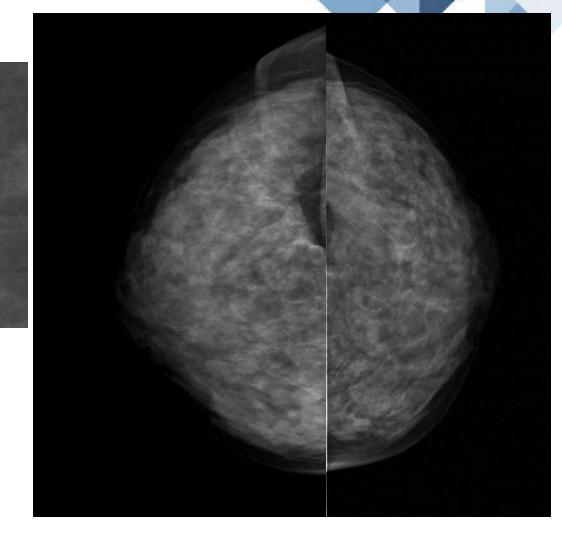


What has changed? Why thinking beyond classical screening

- underdiagnosis (breast density), false positive cases (specificity),
- overdiagnosis (lead time bias- DCIS)
- Advances in local and systemic treatment made BC a story of success with
- Nonetheless treatment options are less favourable in advanced disease stages making early detection important

Underdiagnosis/ false positive cases- breast density




A,B: non dense C,D: dense

ESMO DEEP DIVE: BREAST CANCER

DENSITY OF THE BREAST

and related difficulties for imaging

Very difficult to spot a small cancer in a dense breast

ESMO DEEP DIVE: BREAST CANCER

BREAST DENSITY

Breast Density Notification Law in 2009 in Connecticut/ FDA finalised language in 3/23

Case of Dr. Nancy Cappello, diagnosed with lymphnode positive BC at age 51 (2004)

- despite regular , yearly screening mammograms from the age of 40
- regular, monthly self examination, healthy life style, no family history
- Palpable ridge: US revealed 2.5 cm mass, with 13 positive lymphnodes, Stage III c, died of complication related to myelodysplastic syndrome in 2019

Mrs. Cappello campaigned for a law to have patients informed of their breast density and related low diagnostic performance

- low sensitivity of mammography (up to 93% in fatty breast to 30% in extremely dense breasts (D category)
- Number of false positive results in fatty breast 11/1000 mammo increases to 24/1000 in dense breast
- Screening reduces relative risk of death from BC in fatty breast to 43 % compared to 13 %
- Density is independent risk factor for developing breast cancer aside age and genetics (4-6 fold in D breasts)

Boyd NF et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007

van der Waal D, Ripping TM, Verbeek AL, Broeders MJ. Breast cancer screening effect across breast densitystrata: A case-control study. **Int J Cancer** 2017;140(1):41–49 Brown AL et al Breast Cancer in Dense Breasts: Detection Challenges and Supplemental Screening Opportunities. *Radiographics, Vol 42, Nr 10*

ESMO DEEP DIVE: BREAST CANCER

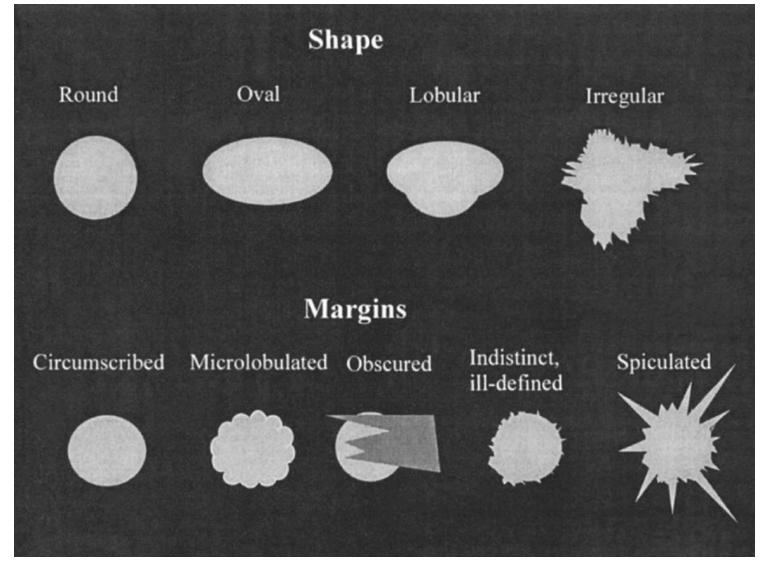
OVERVIEW

Screening for breast cancer-what to do beyond mammography?

- . Clinical Examination
- Diagnostic Imaging modalities
 - . 2D mammography working horse
 - . Ultrasound complimentary tool, primary diagnostic tool in young women
 - . Tomosynthesis address breast density
 - . MRI Breast (abbreviated protocol)
 - . Contrast enhanced mammography CESM alternative to MRI- visualises neovascularisation
 - Risk stratification vs One-size fits all
 - Risk profile based approach requires patient engagement/choice
 - Improve benefit-to-harm-ratio and cost-effectiveness

ESMO DEEP DIVE: BREAST CANCER

DIAGNOSTIC ASSESSMENT OF BREAST CANCER CLINICAL EXAMINATION

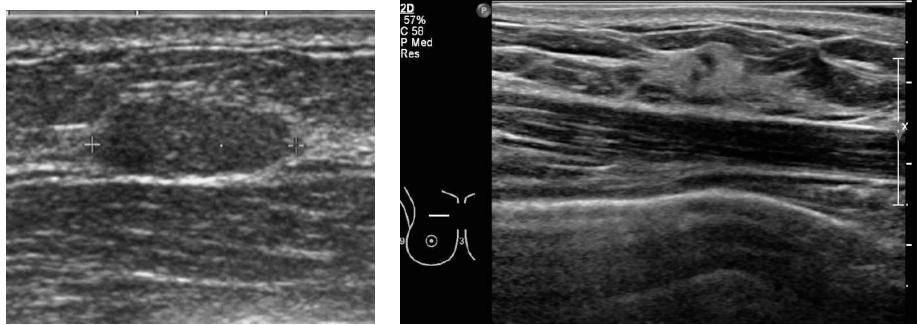

Diagnostic Performance in 258 Lesions (177 Malignancies, 81 Benign Lesions)

Modality	Sensitivity	Specificity
Mammography	120/177(67.8)	61/81 (75)
Mammography & Clinical Examination	137/177 (77.4)	58/81 (72)
Clinical Examination	89/177 (50.3)	75/81 (92)
US	147/177 (83.0)	28/81 (34)
Mammography & US	162/177 (91.5)	19/81 (23)
Mammography, Clinical Examination & US	165/177 (93.2)	18/81 (22)
MR Imaging	167/177 (94.4)	21/81 (26)
Mammography, Clinical Examination & MR	176/177 (99.4)	6/81 (7)

Berg WA et al (2004). Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative Assessment of breast cancer. *Radiology 2004*

ESMO DEEP DIVE: BREAST CANCER

DIAGNOSTIC IMAGING CHARACTERISTICS



ESMO DEEP DIVE: BREAST CANCER

ULTRASOUND AS ADJUNCT TO SCREENING

Fibroadenoma

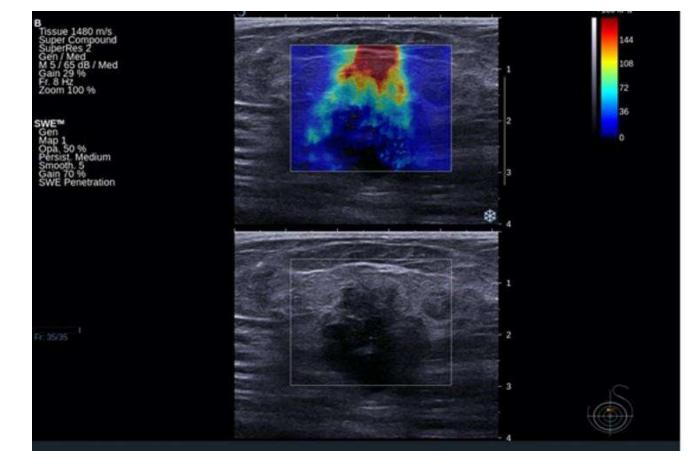
Invasive ductal carcinoma

Advantage:

Screening US increases detection of small, node negative cancers not detected on clinical examination and mammogram Decreases interval cancer rate

Disadvantage:

Increases false positive rate (134/1000, benchmark mammo 50-120/1000) and high negative biopsy rate (not cost effective)

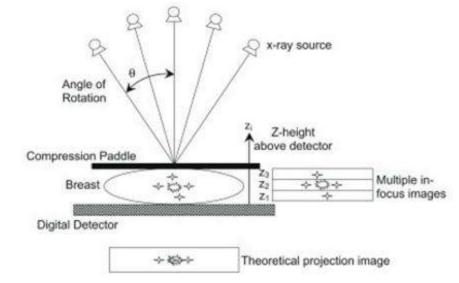

ESMO DEEP DIVE: BREAST CANCER

Al may help improve characterisation Decrease false positive rate

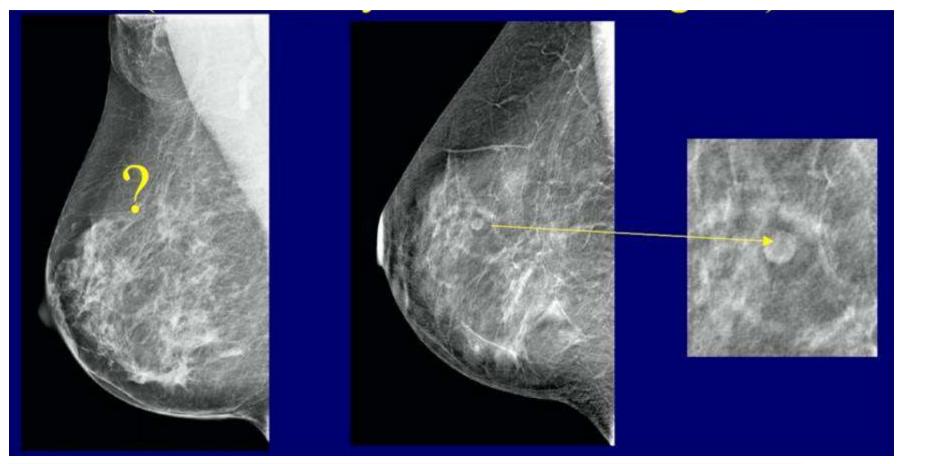
ESMO DEEP DIVE: BREAST CANCER

B-mode depicts a hypoechoic inhomogeneous, irregular mass lesion. SSI shows a high elasticity score > 140 kpA

Helps avoiding unnecessary, benign BX's


ESMO DEEP DIVE: BREAST CANCER

TOMOSYNTHESIS AS ADJUNCT TO SCREENING



The creation of a 3D image of the breast by digital processing of multiple x-ray projection images.

A series of usually 7-9 low-dose images are recorded as the mammographic unit moves gradually in a small arc over the compressed breast.

TOMOSYNTHESIS HELPS MITIGATE DENSITY PROBLEM

Gao Y, Moy L, Heller SL. Digital Breast Tomosynthesis: Update on Technology, Evidence, and Clinical Practice. Radio Graphics 2021;41(2):321-337

- Improved margin assessment
- Improved characterisation
- Reduces recall rates in screening setting
- Increases cancer detection rate
- Increases false positive rate
- Less effective in very dense D breast

ESMO DEEP DIVE: BREAST CANCER

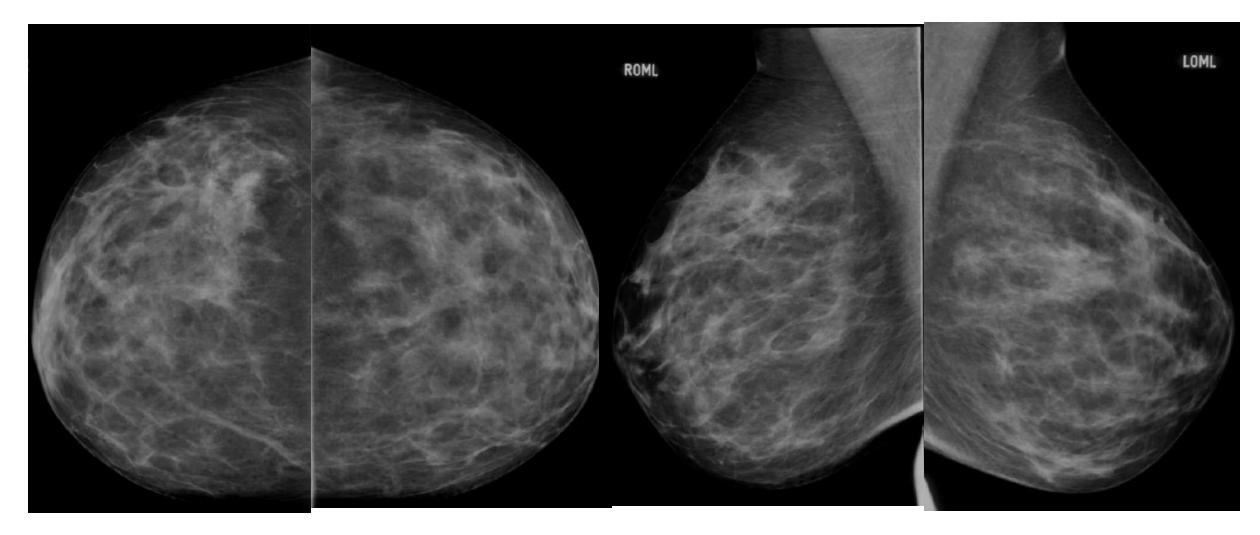
TOMOSYNTHESIS

Limitations

 Slightly increased dose compared to conventional mammography

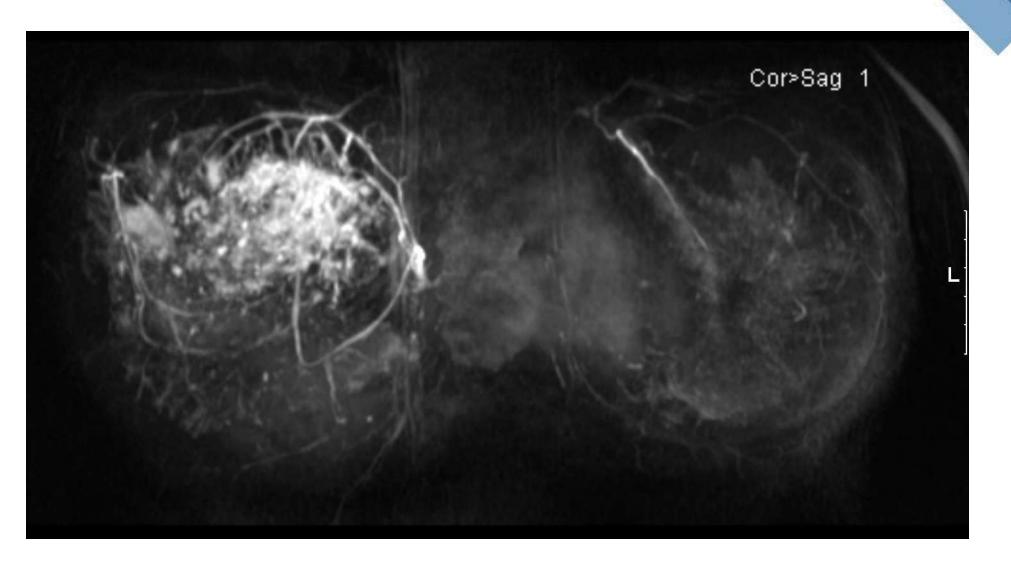
(FDA limited dose of 300 millirads per exposure; convent. Mammo: 150 - 250 mr)

- Increased reading times
- Increased mass lesion detection (benign/malignant)
- Possibly inferior regarding detection and characterization of microcalcifications



ESMO WEBINAR SERIES

ESMO DEEP DIVE: BREAST CANCER

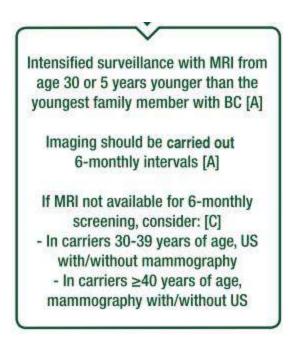

CAN MRI HELP ?

ESMO DEEP DIVE: BREAST CANCER

Extensive high grade DCIS **ESMO DEEP DIVE: BREAST CANCER**

MRI-SCREENING TOOL IN HIGH RISK WOMEN ?

1909 women, lifetime risk greater or equal 15%


	Sensitivity Any Breast Cancer	Invasive BC	Specificity
Clinical breast	17,8	17,9	98,1
examination			
Mammography	40,0	33,3	95
MRI	71,1	79,5	89,8

Kriege M et al. Efficacy of MRI and mammography for breast-cancer screening in women with a fimilial or genetic predisposition. N Engl J Med 2004

ESMO DEEP DIVE: BREAST CANCER

RISK REDUCTION AND SCREENING OF CANCER IN HEREDITARY BREAST-OVARIAN CANCER SYNDROMES

ESMO Clinical Practice Guideline

BRCA1

BRCA 2

Intensified surveillance with MRI from age 30 or 5 years younger than the youngest family member with BC [A]

Imaging should be performed annually [A]

-no data on cessation date of MRI
-as long as women is in good health
-not recommended to "switch" to mammography once density decreases with age

Ann Oncol. 2023;34(1):33-47. C. Sessa, J. Balmaña, S.L. Bober, et al, on behalf of the ESMO Guidelines Committee

ESMO DEEP DIVE: BREAST CANCER

Tanja Gagliardi MD

ESMO DEEP DIVE: BREAST CANCER

- High sensitivity but moderate specificity
 - True positive : false positive = 1.9 : 1
- Pre-operative MRI changes surgical treatment
 - BCT -> MX
- Delays treatment (sec. look ultrasound, BX, MRI guided BX)
- Costly and time consuming (? Abbreviated MRI)
- No impact on Overall Survival
- Little impact on local recurrent disease

Houssami, N., Turner, R.M. & Morrow, M. Meta-analysis of pre-operative magnetic resonance imaging (MRI) and surgical treatment for breast cancer. Breast Cancer Res Treat **165**, 273–283 (2017)

ESMO DEEP DIVE: BREAST CANCER

EUSOBI RECOMMENDATIONS

European Radiology (2022) 32:4036-4045 https://doi.org/10.1007/s00330-022-08617-6

BREAST

Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI)

Ritse M. Mann^{1,2} · Alexandra Athanasiou³ · Pascal A. T. Baltzer⁴ · Julia Camps-Herrero⁵ · Paola Clauser⁴ · Eva M. Fallenberg⁶ · Gabor Forrai⁷ · Michael H. Fuchsjäger⁸ · Thomas H. Helbich⁴ · Fleur Killburn-Toppin⁹ · Mihai Lesaru¹⁰ · Pietro Panizza¹¹ · Federica Pediconi¹² · Ruud M. Pijnappel^{13,14} · Katja Pinker^{4,15} · Francesco Sardanelli^{16,17} · Tamar Sella¹⁸ · Isabelle Thomassin-Naggara¹⁹ · Sophia Zackrisson²⁰ · Fiona J. Gilbert⁹ · Christiane K. Kuhl²¹ · On behalf of the European Society of Breast Imaging (EUSOBI)

"In light of the available evidence, in women aged 50 to 70 years with extremely dense breasts (8% of screening population), the EUSOBI now recommends offering screening breast MRI every 2 to 4 years "

-Radiology Societies and Policymakers should act on this

- Women should be counselled and informed

OVERVIEW

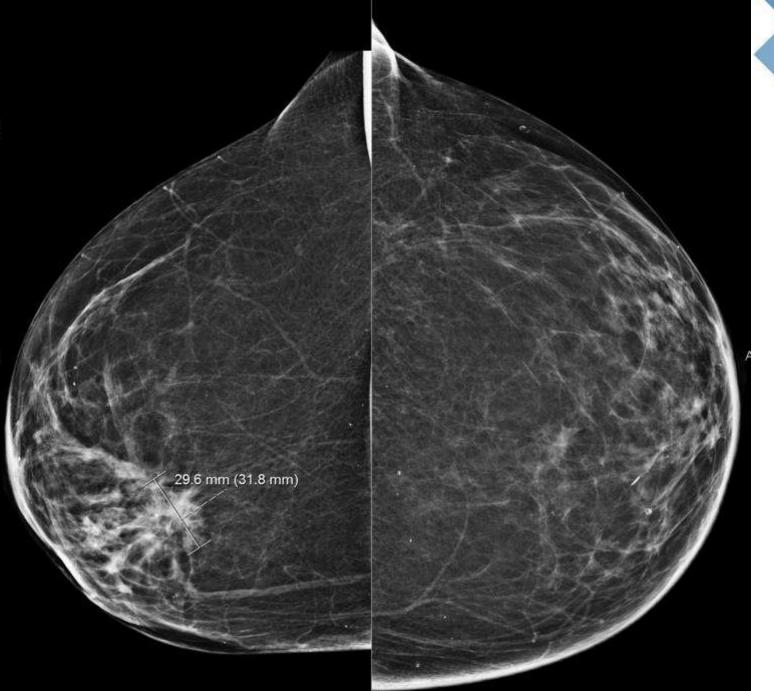
Screening for breast cancer-what to do beyond mammography?

- . Clinical Examination
- Diagnostic Imaging modalities
 - . 2D mammography working horse
 - . Ultrasound complimentary tool, primary diagnostic tool in young women
 - . Tomosynthesis address breast density
 - MRI Breast (abbreviated protocol)
 - Contrast enhanced mammography CESM alternative to MRI- visualises neovascularisation
 - Risk stratification vs One-size fits all
 - Risk profile based approach requires patient engagement/choice
 - Improve benefit-to-harm-ratio and cost-effectiveness

ESMO DEEP DIVE: BREAST CANCER

WHICH MODALITY IS BETTER FOR BC DIAGNOSIS ?

Mammography vs Contrast Enhanced Mammogram VS MRI


Breast MRI introduced in 1984, CEM in 2011 (approved by FDA as adjunct modality for BC diagnostic follow up, but not screening)

- . Mammogram standard for screening and symptomatic services, limitations in dense breast tissue, needs supplemented by Ultrasound
- CEM provides functional information similar to MRI visualising tumour vascularisation
- Sensitivity CEM vs mammography: 90.5% vs 52.4%
- Specificity CEM vs Mammography: 76.1 % vs 90.5%
- MRI Sensitivity up to 100%, Specificity 70-98 %
- MRI covers areas not well seen on mammo/CEM: posterior locations, prepectoral area, axilla
- MRI effective in implant diagnosis, no radiation, chemotheraphy assessment

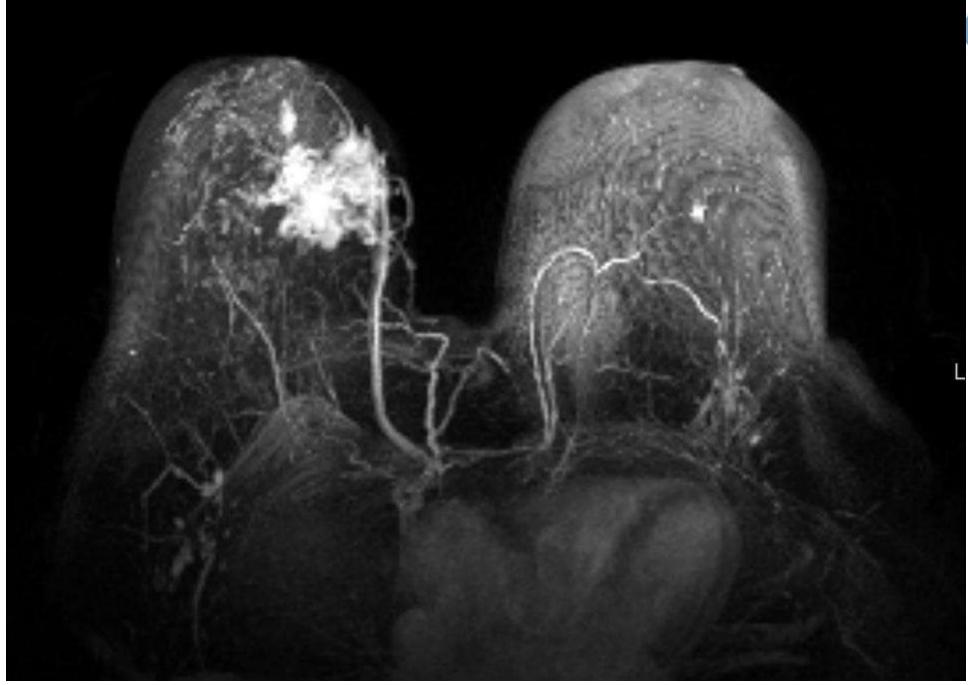
ESMO DEEP DIVE: BREAST CANCER

Invasive Lobular Cancer

ESMO DEEP DIVE: BI

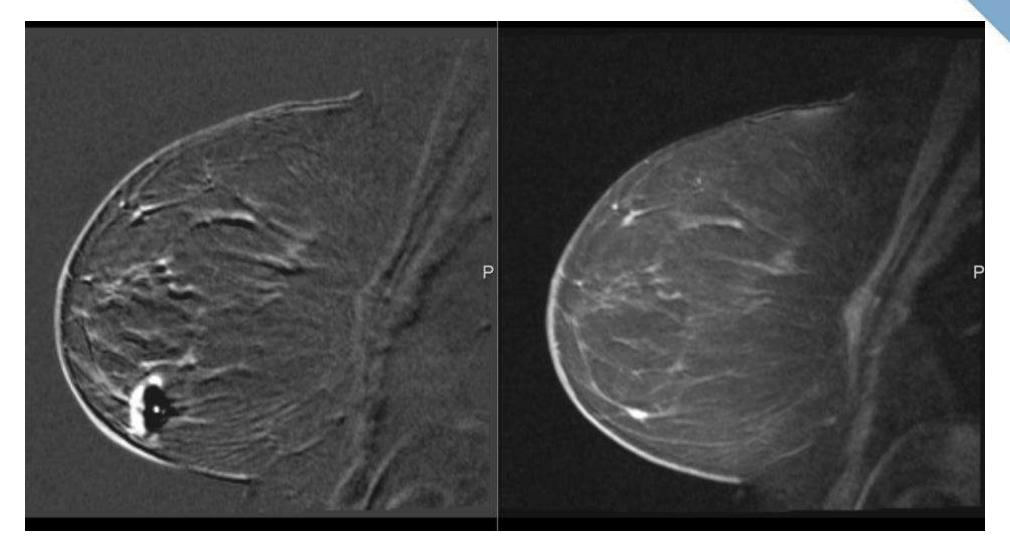
2 D mammography

ESMO DEEP DIVE: BREAST



Contrast enhanced Mammography CESM

ESMO DEEP DIVE:



MRI MIP

Contralateral lesion

Invasive lobular cancer bilateral, confirmed via MRI guided BX

ESMO DEEP DIVE: BREAST CANCER

CONTRAST ENHANCED MAMMOGRAPHY CESM

Why would you do it?

- To mitigate low sensitivity of dense breast tissue
- As alternative to MRI breast if no easy access to MRI or MRI guided facilities, contra-indication to MRI
- One -stop shopping principle (no new date for MRI needed)

Marcon et al. European Radiology https://doi.org/10.1007/s00330-024-10740-5

INVITED REVIEW

Open Access

Chick for spowers

ESR Essentials: screening for breast cancer - general recommendations by EUSOBI

Magda Marcon^{1,2*}⁽²⁾, Michael H. Fuchsjäger³, Paola Clauser⁴ and Ritse M. Mann⁵

Regular mammography should be considered mainstay of breast cancer screening NO CHANGE

High-risk-women and women with extremely dense breast tissue (BI-RADS D) should use MRI for supplemental screening or Ultrasound if MRI is not available

Women need to participate actively in the decision to undergo personalised screening- risk stratified approach early in life

Eur Radiol. 2024 Apr 24. doi: 10.1007/s00330-024-10740-5.

RISK STRATIFICATION VIA RISK PREDICTION MODELLS Vs One-size-fits all

- . Age of menarche and menopause
- . Reproductive history (breast feeding)
- . Obesity
- Previous biopsy with atypia
- Previous thoracic radiation therapy (mantle field radiation: age 20- 35 y)
- Family cancer history, Genetic profile (BRCA1/BRCA2 carrier), Low penetrance genes (CHEK 2, SNP's)
- Breast density (2.9-6 fold increased risk compared to predominantly fatty breasts)

ESMO DEEP DIVE: BREAST CANCER

RISK CATEGORIES

Average risk= life time risk of 15 % or less

Intermediate risk= life time risk of 15-20 %

biopsy with atypical ductal hyperplasia (ADH) biopsy with lobular carcinoma in situ (LCIS) previous personal history of breast cancer

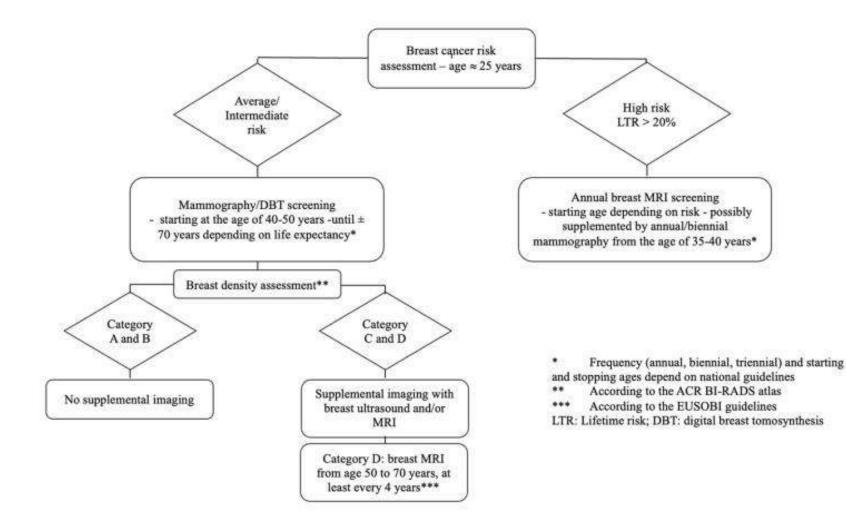
High risk = life time risk of > 20 %

- intermediate high : highly pos. family history, but no known mutation; CHEK2 or BARD1 (low penetr. mut.)
- very high > 50 % life time risk, due to hereditary mutations in high penetr. genes BRCA1/ BRCA2 (5-10% of all breast cancer cases

ESMO DEEP DIVE: BREAST CANCER

SCREENING FOR BREAST CANCER

What can we do beyond mammography ?



- Speak to your patients early on, 25 years as a start
- Calculate risk (risk prediction models)
- Deep learning models applied to mammographic images may improve risk prediction
- . Establish an individualised protocol / Several trials to investigate implementation of different screening modalities and schedules based on personal risk estimation for women not known to be at high risk
 - MyPeBS (My Personal Breast Cancer Screening) Europe
 - . WISDOM (Women Informed to Screen Depending On Measures of risk) United States
 - Readjust if needed (becomes symptomatic, receives a biopsy, radiation for other reasons)

Marcon et al. Eur Radiol. 2024 Apr 24. doi: 10.1007/s00330-024-10740-5

ESMO DEEP DIVE: BREAST CANCER

Table 1 Summary recommendations on breast cancer screening

Recommendations on breast cancer screening

- Regular mammography should be considered the mainstay of breast cancer screening (evidence level I); digital breast tomosynthesis can be
 performed as an alternative.
- Women at high risk of breast cancer: screening should start as early as 25 years of age with annual breast MRI (evidence level I), supplemented with mammography from age 35 to 40 years.
- Women at intermediate risk of breast cancer: supplemental screening, including digital breast tomosynthesis, breast ultrasound, breast MRI, and possibly contrast-enhanced mammography may be beneficial. The most appropriate imaging modalities should be adjusted to patient characteristics.
- Women with extremely dense breast tissue: supplemental screening with MRI should be performed preferably every 2–3 years (evidence level I). If MRI is not available, supplemental ultrasound can be performed as an alternative although the evidence remains more limited.
- Whenever possible, risk assessment should be performed at a young age (≈25 years) to effectively tailor screening recommendations.

Marcon et al. Eur Radiol. 2024 Apr 24. doi: 10.1007/s00330-024-10740-5

ESMO DEEP DIVE: BREAST CANCER

THANK YOU SO MUCH FOR YOUR ATTENTION

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

BREAKTHROUGHS IN PERSONALISED, MOLECULARLY-INFORMED RISK PREDICTION, SCREENING AND EARLY DETECTION OF BREAST CANCER

Lifestyle changes: IS PREVENTION POSSIBLE?

Suzette Delaloge

Head, Personalised Cancer Prevention Programme, Department of Cancer Medicine

Gustave Roussy, Villejuif, France

INTER GUSTAVE ROUSSY **EPTION** Le programme de prévention personnalisée des cancers

DISCLOSURES

Suzette Delaloge

Research support (to my institution)

AstraZeneca, MSD, BMS, Sanofi, Taiho, Novartis, European Commission, INCa, Banque des Territoires, Fondation Philanthropia

Honoraria for lectures and advisory boards (to my institution)

Astra Zeneca, Gilead, Novartis, Elsan, Besins, Sanofi, Exact Sciences, Lilly

Travel support Novartis (national meeting)

ESMO DEEP DIVE: BREAST CANCER

LIFESTYLE CHANGES: IS PREVENTION POSSIBLE?

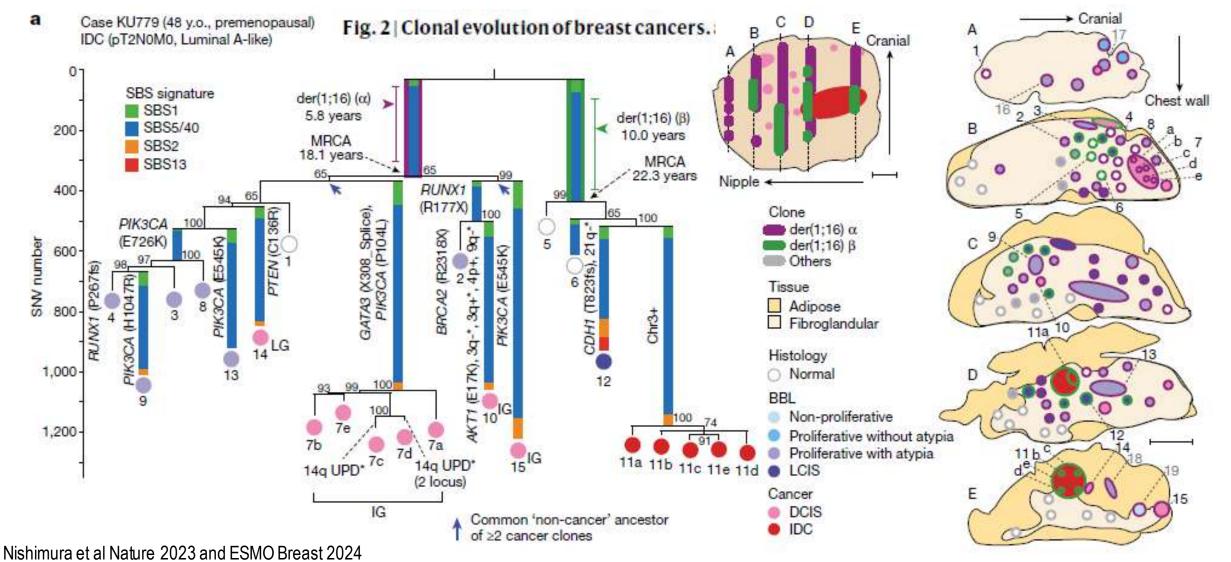
Towards stratified/personalized breast cancer prevention

- How does it work?
- Epidemiological data
- Interventional results
- How and for whom?
- Conclusions

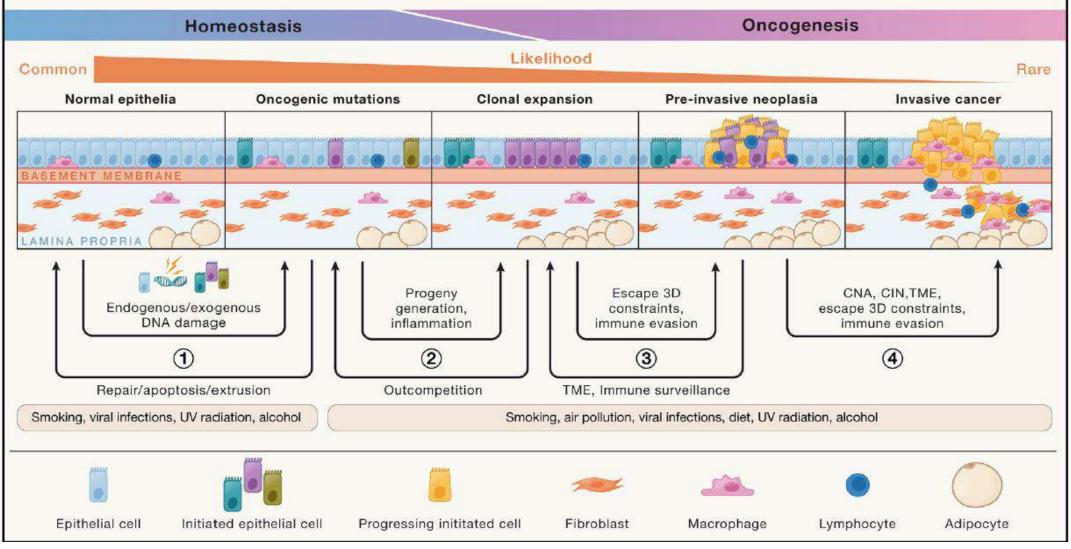
LIFESTYLE CHANGES: IS PREVENTION POSSIBLE?

Towards stratified/personalized breast cancer prevention

- How does it work?
- Epidemiological data
- Interventional results
- How and for whom?
- Conclusions

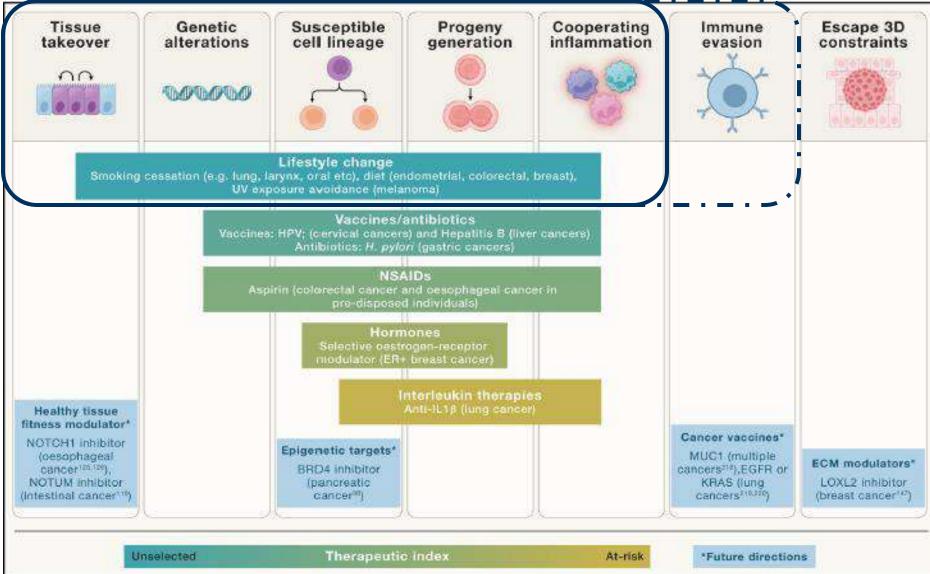


REAPPRAISING CARCINOGENESIS: ONE'S INSTANTANEOUS RISK OF CANCER IS DEPENDENT ON AGE, TIME, GENETIC BACKGROUND, EXPOSURES



THE CLONAL EXPANSION OF HEALTHY MUTANT BREAST CELLS MAKES THE BED OF A (NON OBLIGATORY) TRANSFORMATION (AND IS EXPOSURE-SENSITIVE)

A REVISITED VISION OF CARCINOGENESIS


Weeden, Swanton, Impact of risk factors on early cancer evolution, Cell 2023

ESMO DEEP DIVE: BREAST CANCER

IMPACT ON PRIMARY PREVENTION INTERVENTIONS

Weeden, Swanton, Impact of risk factors on early cancer evolution, Cell 2023

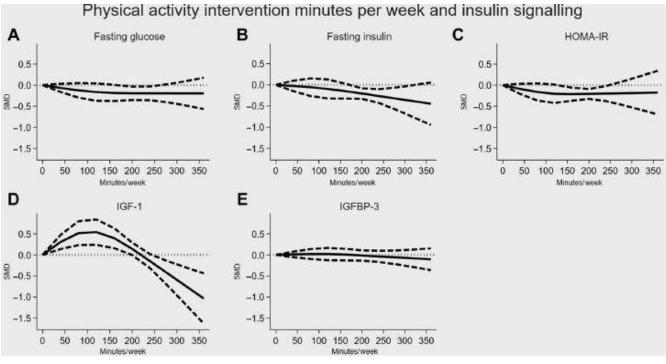
Physical activity

Inflammation

Physical activity has a favorable effect on adiponectin, TNFa, IL6

Outcome	Meta-analysis study n (participant n)	Meta-analysis effect estimate SMD (95% CI)	GRADE judgmen
CRP Cutokines	12 (1, 210)	-0.27 (-0.62 to 0.08)	Low ^{ab}
TNFα	8 (564)	-0.63 (-1.04 to -0.22)	Moderate ^a
IL1B	NA	NA	Verv low
IL6	11 (895)	-0.55 (-0.97 to -0.13)	Moderate ^a
IL8 IL10 Adipokines	NA NA	NA NA	Very low Very low
Adiponectin	5 (645)	0.01 (-0.14 to 0.17)	High
Leptin	4 (586)	-0.50 (-1.10 to 0.09)	Low

ESMO DEEP DIVE: BREAST CANCER Swain et al CEBP 2023


Study	N	Exerc		N	Contr						SMD with 95% (Weight (%)
Chagas 2017	- 23	0.000				5.58					-0.57 [-1.05-	S.S. and	S
Chow 2021						12.1					-1.75 [-2.73-		
Friedenreich 2011													12245
en sta sectore e sectore e se						0.32					0.00 [-0.22-		
Lee 2012		7 2.0			2.05			_	-		0.01 [-0.99-	ALCONT.	
NonoNankam 202						6.39			-		-0.36 [-0.97-		
Tartiban 2011	2	17 V T T T				20.6	-		-		-1.19 [-1.86-		
Tartiban 2015	1	4 3.	8 1.	5 14	1 5.6	1.1-			-		-1.33 [-2.13-	0.53]	10.88
Tomoleri 2018	2	2 2.	9 0.	5 23	3 3.4	1.8		-			-0.37 [-0.95-	0.21]	13.49
Overall								-			-0.63 [-1.04-	0.22]	
Heterogeneity: / ² :	= 75.7	73%											
							2	-1		0	1		
B Physical activ	rity &	IL6											
	E	xercis	se.		Contro						SMD		Weight
Study	N	Mean	SD	N	Mean	SD					with 95% C	1	(%)
Study Campbell 2009	N 47	Mean 2.7	SD 2.6		Mean 2.4	SD 2.1			-	-	with 95% C		(%)
	10100			57						-		0.51]	(%) 10.52
Campbell 2009	47	2.7	2.6 1.2	57	2.4	2.1				-	0.13 [-0.26-	0.51] 0.26]	(%) 10.52 10.10
Campbell 2009 Chagas 2017	47 35	2.7 2.7 25	2.6 1.2	57 35 10	2.4 3.4 29	2.1 4.7		2. <u></u>		-	0.13 [-0.26 - -0.20 [-0.67 -	0.51] 0.26] -0.05	(%) 10.52 10.10] 7.74
Campbell 2009 Chagas 2017 Chow 2021	47 35 11	2.7 2.7 25 1.5	2.6 1.2 2.6	57 35 10 154	2.4 3.4 29 1.6	2.1 4.7 6.5		-	-		0.13 [-0.26 - -0.20 [-0.67 - -0.92 [-1.79 -	0.51] 0.26] -0.05 0.12]	(%) 10.52 10.10] 7.74 11.16
Campbell 2009 Chagas 2017 Chow 2021 Friedenreich 2011	47 35 11 154 117	2.7 2.7 25 1.5	2.6 1.2 2.6 0.95 0.47	57 35 10 154 87	2.4 3.4 29 1.6	2.1 4.7 6.5 0.95		_			0.13 [-0.26- -0.20 [-0.67- -0.92 [-1.79- -0.11 [-0.33-	0.51] 0.26] -0.05 0.12] 0.21]	(%) 10.52 10.10] 7.74 11.16
Campbell 2009 Chagas 2017 Chow 2021 Friedenreich 2011 Imayama 2012	47 35 11 154 117	2.7 2.7 25 1.5 1.6	2.6 1.2 2.6 0.95 0.47	57 35 10 154 87 7	2.4 3.4 29 1.6 1.6	2.1 4.7 6.5 0.95 0.41		-			0.13 [-0.26- -0.20 [-0.67- -0.92 [-1.79- -0.11 [-0.33- -0.07 [-0.34-	0.51] 0.26] -0.05 0.12] 0.21] 0.64]	(%) 10.52 10.10 7.74 11.16 10.98
Campbell 2009 Chagas 2017 Chow 2021 Friedenreich 2011 Imayama 2012 Lee 2012	47 35 11 154 117 7	2.7 2.7 25 1.5 1.6 0.71	2.6 1.2 2.6 0.95 0.47 0.69	57 35 10 154 87 7 12	2.4 3.4 29 1.6 1.6 0.95	2.1 4.7 6.5 0.95 0.41 0.6					0.13 [-0.26- -0.20 [-0.67- -0.92 [-1.79- -0.11 [-0.33- -0.07 [-0.34- -0.35 [-1.34-	0.51] 0.26] -0.05 0.12] 0.21] 0.64] 0.25]	(%) 10.52 10.10] 7.74 11.16 10.98 7.04
Campbell 2009 Chagas 2017 Chow 2021 Friedenreich 2011 Imayama 2012 Lee 2012 Olson 2007	47 35 11 154 117 7 16	2.7 2.7 1.5 1.6 0.71 2.0	2.6 1.2 2.6 0.95 0.47 0.69 0.7	57 35 10 154 87 7 12 18	2.4 3.4 29 1.6 1.6 0.95 2.5	2.1 4.7 6.5 0.95 0.41 0.6 1.3					0.13 [-0.26 - -0.20 [-0.67 - -0.92 [-1.79 - -0.11 [-0.33 - -0.07 [-0.34 - -0.35 [-1.34 - -0.49 [-1.22 -	0.51] 0.26] -0.05 0.12] 0.21] 0.21] 0.64] 0.25] 0.28]	(%) 10.52 10.10] 7.74 11.16 10.98 7.04 8.51
Campbell 2009 Chagas 2017 Chow 2021 Friedenreich 2011 Imayama 2012 Lee 2012 Olson 2007 Standberg 2015	47 35 11 154 117 7 16 17	2.7 2.7 25 1.5 1.6 0.71 2.0 1.3	2.6 1.2 2.6 0.95 0.47 0.69 0.7 1.1	57 35 10 154 87 7 12 18 18	2.4 3.4 29 1.6 1.6 0.95 2.5 1.9	2.1 4.7 6.5 0.95 0.41 0.6 1.3 1.9	-				0.13 [-0.28- -0.20 [-0.67- -0.92 [-1.79- -0.11 [-0.33- -0.07 [-0.34- -0.35 [-1.34- -0.49 [-1.22- -0.37 [-1.02-	0.51] 0.26] -0.05 0.12] 0.21] 0.64] 0.25] 0.28] 0.25]	(%) 10.52 10.10] 7.74 11.16 10.98 7.04 8.51 9.02
Campbell 2009 Chagas 2017 Chow 2021 Friedenreich 2011 Imayama 2012 Lee 2012 Olson 2007 Standberg 2015 Tartiban 2011	47 35 11 154 117 7 16 17 20	2.7 2.7 25 1.5 1.6 0.71 2.0 1.3 43	2.6 1.2 2.6 0.95 0.47 0.69 0.7 1.1 27 0.8	57 35 10 154 87 7 12 18 18	2.4 3.4 29 1.6 1.6 0.95 2.5 1.9 63	2.1 4.7 6.5 0.95 0.41 0.6 1.3 1.9 30	•••				0.13 [-0.26- -0.20 [-0.67- -0.92 [-1.79- -0.11 [-0.33 - -0.07 [-0.34 - -0.35 [-1.34 - -0.49 [-1.22 - -0.37 [-1.02 - -0.69 [-1.33-	0.51] 0.26] -0.05 0.12] 0.21] 0.64] 0.25] 0.28] 0.28] 0.28] 0.25]	(%) 10.52 10.10] 7.74 11.16 10.98 7.04 8.51 9.02 9.09
Campbell 2009 Chagas 2017 Chow 2021 Friedenreich 2011 Imayama 2012 Lee 2012 Olson 2007 Standberg 2015 Tartiban 2011 Tartiban 2015	47 35 11 154 117 7 16 17 20 14	2.7 25 1.5 1.6 0.71 2.0 1.3 43 1.5	2.6 1.2 2.6 0.95 0.47 0.69 0.7 1.1 27 0.8	57 35 10 154 87 7 12 18 18 18 14	2.4 3.4 29 1.6 1.6 0.95 2.5 1.9 63 3.9	2.1 4.7 6.5 0.95 0.41 0.6 1.3 1.9 30 0.7					0.13 [-0.26- -0.20 [-0.67- -0.92 [-1.79- -0.11 [-0.33- -0.07 [-0.34- -0.35 [-1.34- -0.49 [-1.22- -0.37 [-1.02- -0.69 [-1.33- -3.10 [-4.18-	0.51] 0.26] -0.05 0.12] 0.21] 0.64] 0.25] 0.28] 0.05] 2.02] 0.31]	(%) 10.52 10.10 17.74 11.16 10.98 7.04 8.51 9.02 9.09 6.53

Breast cancer risk

Physical activity

ESMO DEEP DIVE: BREAST CANCER

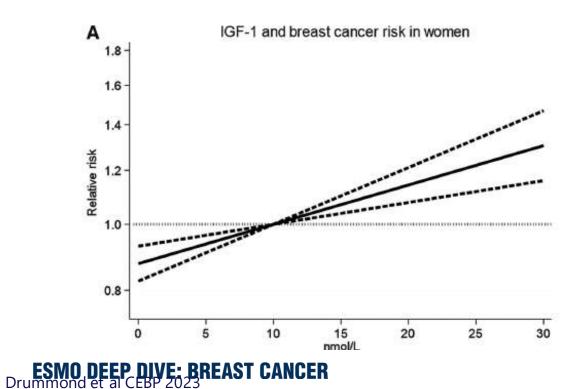
Metabolism

Drummond et al CEBP 2023

Breast cancer risk

Physical activity has a favorable effect on the glucose metabolism

Table 1. GRADE appraisal for physical activity-insulin/IGF signaling pathways.


Outcome	Meta-analysis study <i>n</i> (participant <i>n</i>)	Meta-analysis effect estimate SMD (95% CI)	GRADE judgment
Fasting glucose	20 (1,454)	-0.17 -0.34 to -0.01)	Low ^a
Fasting insulin	18 (1,380)	-0.22-0.32 to -0.11)	High
HOMA-IR	11 (1,160)	-0.21-0.33 to -0.10)	High
C-Peptide	NA	NA	Very low ^b
HBA1c	NA	NA	Very low ^b
IGF-1	76 (1,316)	0.36 (0.05-0.67)	Low ^c
IGFBP-1	NA	NA	Very low ^b
IGFBP-3	6 (1,026)	0.03 (-0.16, 0.09)	High
IGF-1: IGFBP-3	5 (1,003)	-0.04 (-0.17, 0.08)	High

ESMO WEBINAR SERIES¹⁰

Physical activity

Metabolism

The glucose metabolism influences breast cancer risk

Breast cancer risk

	Study type,		Quality of evidence determination							
Outcome,	number,			Criteria for do	wngrading			Quality of		
menopausal status	participant numbers (n)	Effect estimates (RR, 95% Cl)	ROB	Inconsistency	Imprecision	Pub bias	Criteria for upgrading	evidence final		
Insulin										
All women	Observational ^b , 3 (2,139)	1.12 [0.30-1.94]	Serious	No	Yes	?	None	Very low		
All women	Mendelian randomization, 2 (193.415)	1.80 [0.18-8.06] ⁶³ 1.16 [0.96-1.41] ⁶²	1.73	No	Yes	5				
IGF-1										
All women	Observational, 9 (215,500)	1.21 [1.10-1.31] *	Moderate	No	No	Yes	Dose-response	Moderate		
IGFBP-3 adjusted	Observational, 3 (3,650)	0.97 [0.70-1.24]	123	121	No	2				
All women	Mendelian randomization, 1 (228.951)	1.05 [1.01-1.10] ⁶⁵								
IGFBP3	(220,001)									
All women	Observational, 6 (6.692)	1.03 [0.81-1.24]	Moderate	No	No	No	None	Moderate		
All women	Mendelian randomization,	1.00 [0.97-1.04] ⁶⁵	0.78	-	No	5				
C-peptide										
All women	Observational, 4 (5,452)	1.16 [0.93-1.40]	Serious	No	No	?	None	Very low		
Glucose ^a							1010.0			
Premenopausal	Observational, 1 (334)	2.8 [1.2-6.5] ^{56*}	Serious	Yes	Yes	.	None	Very low		
Postmenopausal	() () () () () () () () () ()	1.63 [0.59-4.46]56		No	Yes	π.				
Postmenopausal	Observational, 1 (5,450)	1.14 [0.60-2.16] ⁵⁵		-	Yes	2				
All women	Mendelian	1.03 [0.85-1.25]64								
All women	randomization, 2 (411,257)	1.06 [0.95-1.17] ⁶²								
Post- menopausal		0.63 [0.50-0.79]63								
All women: 2hr	Mendelian	1.50 [1.21-1.86] ^{62*}								
glucose	randomization, 1 (11,109)									
HbA1c		1.00								
Premenopausal	Observational, 1 (7,442)	1.08 [0.65-1.79] ⁵⁷	Moderate	No	Yes	2	None	Very low		
Postmenopausal	Observational, 1 (27,110)	0.73 [0.54-0.98]45	-	-	Yes	7				
All women	Mendelian randomization,	1.02 [0.73-1.45] ⁶⁴								
	1 (228,951)									

Physical activity

Hormones

Physical activity regulates hormone levels

Hormone levels are associated with breast cancer risk

ESMO DEEP DIVE: BREAST CANCER

Swain et al CEBP 2022 & CEBP 2022

-0.5 0 0.5

Estradic

-1

1

Progesterone

2

Estrogen

Campbell 2012

Coneland 200

Gorkem 2018

Krishnan 2014

McTiernan 200

Orsatti 2008

Smith 2011

Xiao 2016

I² = 37.36%

Ha 2018

Overall

I² = 75.80%

Jorgo 2016

Krishnan 201

Schmitz 2015

Smith 2011

Xiao 2015

Overall

 $I^2 = 0.00\%$

Nasim 2011a

Nasim 2011b

Schmitz 2015*

Overall

Tartiban 201

Monninkhof 2009

Jorge 2016

Friedenreich 201

Breast cancer risk

Estrone

-0.4

Free estradiol

-0.8 -0.4

2-OHE1

16a-OH E1

-0.2

0

0.5

0.5

-0.2

Cambell 2012

Erisdonich 201

McTiernan 2004

Monninkhof 2001

Overal

1² = 0.00%

Campbell 2012

Friedenreich 201

McTiernan 2004

Monninkhof 200

Atkinson 2004

Campbell 200

Smith 2013

Overall

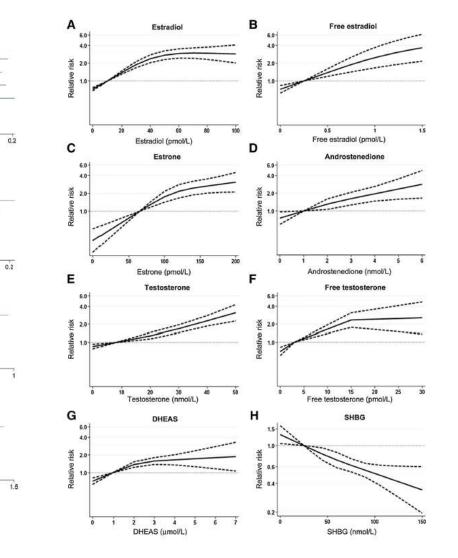
 $1^2 = 0.00\%$

Atkinson 2004

Campbell 2007

Smith 2013

Overall


 $1^2 = 0.00\%$

-0.5

-0.5

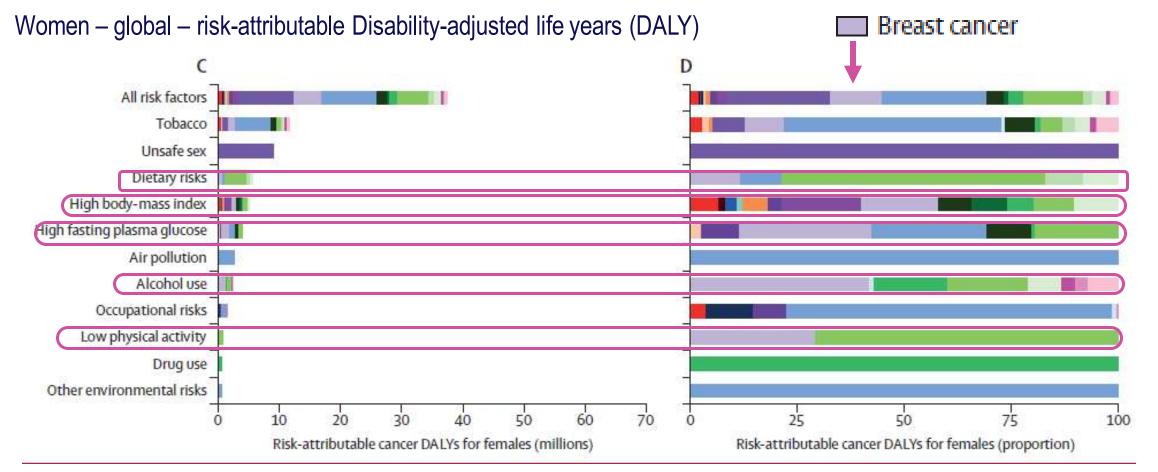
Smith 201

Overall

LIFESTYLE CHANGES: IS PREVENTION POSSIBLE?

Towards stratified/personalized breast cancer prevention

- How does it work?
- Epidemiological data
- Interventional results
- How and for whom?
- Conclusions



RISK-ATTRIBUTABLE CANCERS

ESMO DEEP DIVE: BREAST CANCER Global burden of disease, Lancet 2022

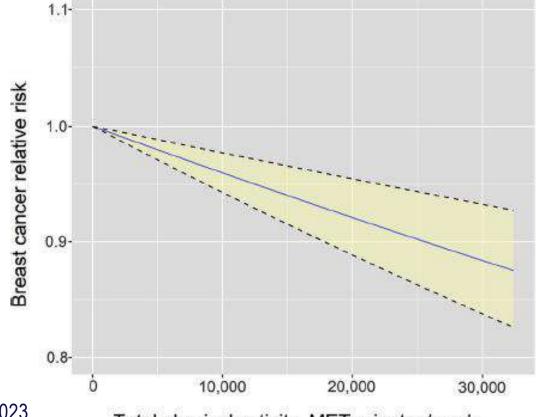
ESMO WEBINAR SERIES¹⁴

BC INCIDENCE: WHAT IS THE MAGNITUDE OF THE EFFECTS IN THE GENERAL POPULATION?

Risk factor	Categories	RR (95% confidence interval)
Hormonal and reproductive	factors	
Age at menarche (years)	11	1.0 (reference)
	15	0.69 (0.65-0.74)
Parity	Nulliparous	1.0 (reference)
	Parous	1.26 (1.10-1.44)
Age at first full-term pregnancy (years)	20	0.73 (0.63-0.86)
herio sint	30	1.16 (0.96-1.41)
Breastfeeding	Per 12 months of total breastfeeding	0.96 (0.94-0.97)
Age at menopause (years)	45	1.0 (reference)
	55	1.44 (1.26-1.64)
Type of menopause	Natural	1.0 (reference)
	Bilateral oophorectomy	0.89 (0.80-0.98)
Postmenopausal hormone use	None	1.0 (reference)
	Estrogen only ^a	1.18 (1.08-1.30)
	Combined estrogen- progestogen ² for > 5 years	1.63 (1.22-2.18)
Lifestyle factors		
Alcohol consumption	Per 12 g/day	1.12 (1.09–1.14)
	Premenopausal	1.09 (1.01–1.17)
	Postmenopausal	1.08 (1.05-1.10)

ESMO DEEP DIVE: BREAST CANCER

IARC Handbook 2014


Fobacco smoking (pack– vears)	≥ 20	1.28 (1.17-1.39)
Weight increase (per 5 kg/m² increase in BMI)	Postmenopausal	1.12 (1.08–1.16)
	Premenopausal	0.92 (0.88-0.97)
Physical activity, high vs low (METs)	Premenopausal	0.87 (0.84-0.92)
	Postmenopausal	0.77 (0.72-0.84)
	Moderate physical activity (3–5.9 METs)	0.81 (0.72-0.92)
Non-modifiable factors		
Height (per 5 cm increase)	Premenopausal	1.09 (1.05-1.14)
	Postmenopausal	1.11 (1.09-1.13)
	Any age	1.03 (1.01-1.04)
Age (years)	< 50	1.0 (reference)
	50-59	6.6 (6.5-6.7)
	60-69	9.2 (9.1-9.3)
	70-79	11.1 (10.9-11.2)
	≥ 80	10.1 (10.0-10.3)
Benign breast disease	No	1.0 (reference)
	Common epithelial hyperplasia	1.5-2.0
	Atypical epithelial hyperplasia	2.5-4.0
Breast density	Dense area, mean: 59.92–201.49 cm²	1.57 (1.18–1.67)
Ionizing radiation		
Radiation exposure		
Family and personal history	of breast cancer	
Mother's age (years) at	< 50	2.69 (2.29-3.15)
breast cancer	≥ 50	1.88 (1.73-2.03)

PHYSICAL ACTIVITY AND BREAST CANCER RISK: A LINEAR RELATIONSHIP

Light Intensity Activities	METs
Sleeping	0.95
Watching television	1.0
Writing, desk work, typing	1.3
Walking, household	2.0
Walking, 2.0 mph (3.2 km/h)	2.8
Moderate Intensity Activities	METs
Walking the dog	3.0
Walking, 2.8 - 3.2 mph (4.5 - 5.1 km/h), level, moderate pace	3.5
Calisthenics, (e.g., push ups, sit ups, pull-ups, lunges), moderate effort	3.8
Yard work, general, moderate effort	4.0
Mowing lawn, general	5.5
Bicycling, leisure, 9.4 mph (15.1 km/h)	5.8
Swimming laps, freestyle, light or moderate effort	5.8
Vigorous Intensity Activities	METs
Jogging, general	7.0
Snow shoveling, by hand, vigorous effort	7.5
Running, 5 mph (8.0 km/h)	8.3
Stair-treadmill ergometer, general	9.0
Swimming laps, freestyle, fast, vigorous effort	9.8
Running, 8 mph (12.9 km/h)	11.8

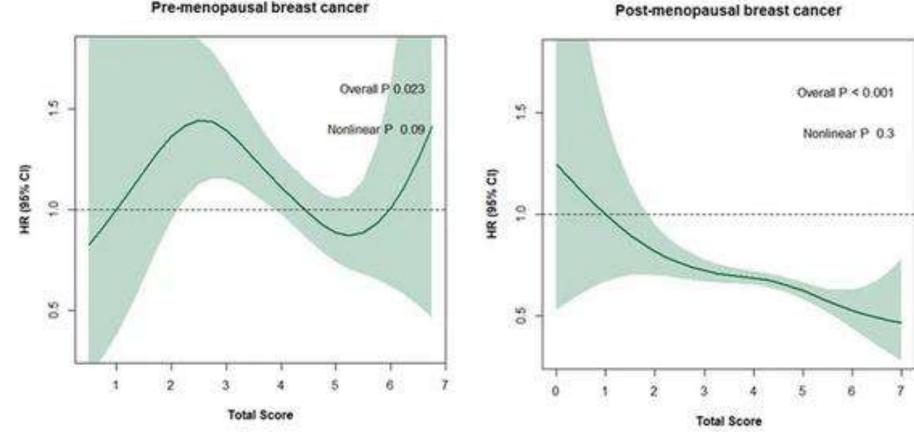
ESMO DEEP DIVE: BREAST CANCER

Diao et al Cancer Comm 2023

Total physical activity, MET-minutes/week

NUTRITION AND BREAST CANCER RISK: HOW BEST TO ASSESS ONE'S NUTRITIONAL PROFILE?

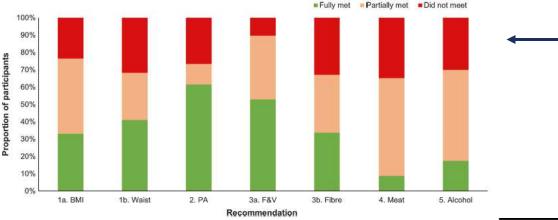
Adherence to the WCRF prevention recommendations has the highest level of evidence



ESMO DEEP DIVE: BREAST CANCER

	2018 WCRF/AICR Recommendations	Operationalization of Recommendations	Points
		BMI (kg/m ²): ²	
		18.5-24.9	0.5
		25-29.9	0.25
		<18.5 or ≥30	0
	Be a healthy weight	Waist circumference (cm (in)): ^{2,3}	
	ic cheaning weight	Men: <94 (<37)	0.5
		Women: <80 (<31.5)	0.5
		Men: 94-<102 (37-<40)	0.25
		Women: 80-<88 (31.5-<35)	0.25
		Men: ≥102 (≥40)	0
		Women: ≥88 (≥35)	U
		Total moderate-vigorous physical activity (min/wk): ⁴	
ŝ	Be physically active	≥150	1
		75-<150	0.5
		<75	0
		Fruits and vegetables (g/day): ⁵	
		≥400	0.5
		200-<400	0.25
	Fat a diet rich in wholegrains, vegetables, fruit and beans	<200	0
	Early decementary whole grants, vegetables, martand bears	Total fiber (g/day): ⁵	
		≥30	0.5
		15-<30	0.25
		<15	0
		Percent of total kcal from ultra-processed foods (aUPFs): ⁶	i.
		Tertile 1	1
	Eat a diet rich in wholegrains, vegetables, fruit and beans Limit consumption of "fast foods" and other processed oods high in fat, starches or sugars Limit consumption of red and processed meat	Tertile 2	0.5
		Tertile 3	0
		Total red meat (g/wk) and processed meat (g/wk):	
	Limit consumption of red and processed meat	Red meat <500 and processed meat <21	1
		Red meat <500 and processed meat 21-<100	0.5
		Red meat >500 or processed meat ≥100	0
		Total sugar-sweetened drinks (g/day):	
i.	Limit consumption of sugar-sweetened drinks	0	1
		>0-≤250	0.5
		>250	0
		Total ethanol (g/day):	
í.	Limit alcohol consumption	0	1
	F	>0–≤28 (2 drinks) males and ≤14 (1 drink) females	0.5
		>28 (2 drinks) males and >14 (1 drink) females	0
		Exclusively breastfed over lifetime for a total of:	
ŝ	(Optional) For mothers: breastfeed your baby, if you can	6+ months	1
		>0-<6 months	0.5
		Never	0
_	Total Score	e Range	0-7 (or 0-

EFFECT OF ADHERENCE TO RECOMMENDATIONS ON BREAST CANCER RISK


Adherence to the WCRF prevention recommendations and breast cancer risk in the UK Biobank

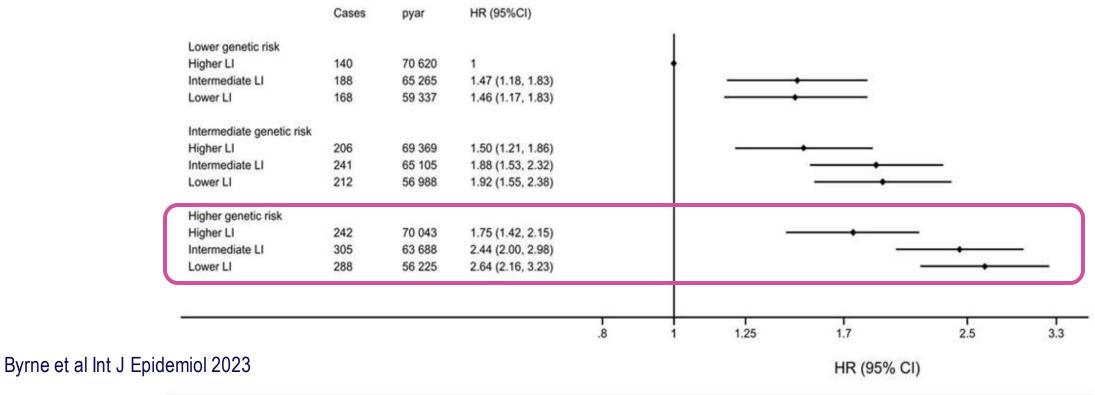
Macolmson BMC Med 2023

ESMO DEEP DIVE: BREAST CAN

EFFECT OF ADHERENCE TO RECOMMENDATIONS ON BREAST CANCER RISK

Adherence to the WCRF prevention recommendations (abbreviated score, 5 points) and breast cancer risk in the UK Biobank: effect on cancer risk by 1 point increment

		Incident	Model 1		Model 2		
Cancer site	Total	cancers	HR (95% CI)	Р	HR (95% CI)	Р	
All cancers combined Prostate	284,553 139 240	23,448 5.677	0.92 (0.91-0.93)	<0.001	0.93 (0.92-0.95)	< 0.00 1	
Breast	147,655	4,014	0.90 (0.87-0.93)	< 0.001	0.90 (0.87-0.94)	< 0.00	
Premenopausal	2,705	359	0.93 (0.82-1.04)	0.183	0.91 (0.81-1.02)	0.123	
Postmenopausal	144,950	3.655	0.89 (0.86-0.93)	< 0.001	0.90 (0.86-0.93)	< 0.00	
Colorectal	288,191	2,689	0.86 (0.82-0.90)	<0.001	0.86 (0.83-0.90)	<0.00	
Colon	288,361	1,812	0.84 (0.80-0.89)	<0.001	0.85 (0.80-0.89)	<0.00	
Distal	288,537	756	0.84 (0.77-0.91)	<0.001	0.84 (0.77-0.91)	<0.00	
Proximal	288,554	965	0.85 (0.79-0.91)	<0.001	0.86 (0.80-0.92)	<0.00	
Rectum	288,518	1.052	0.86 (0.80-0.92)	<0.001	0.87 (0.81-0.93)	<0.00	
Lung Kidney	288,493 288,593	1,805 764	0.79 (0.75-0.83) 0.81 (0.75-0.88)	<0.001 <0.001	0.89 (0.84-0.94) 0.83 (0.76-0.90)	<0.00 <0.00 <0.00	
Pancreas	288,629	745	0.85 (0.79-0.92)	<0.001	0.86 (0.79-0.94)	<0.00	
Uterus	148,395	684	0.81 (0.74-0.88)	<0.001	0.79 (0.73-0.86)	<0.00	
Esophagus	288,627	555	0.78 (0.71-0.86)	<0.001	0.82 (0.75-0.90)	< 0.00	
Ovary	148,434	482	1.00 (0.90-1.11)	0.983	1.00 (0.90-1.11)	0.940	
Bladder	288,603	549	0.88 (0.80-0.97)	0.001	0.93 (0.84-1.02)	0.118	
Head and neck	288,626	445	0.96 (0.87-1.07)	0.464	1.01 (0.91-1.12)	0.888	
Stomach	288,645	389	0.86 (0.77-0.97)	0.011	0.89 (0.79-0.99)		
Liver	288,653	356	0.79 (0.70-0.89)	< 0.001	0.80 (0.72-0.90)	< 0.00	
Gallbladder	288,687	153	0.94 (0.78-1.12)	0.483	0.94 (0.78-1.12)	0.483	

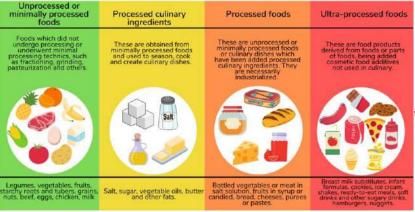

Macolmson CEBP 2024

ESMO DEEP DIVE: BREAST CANCER

LIFESTYLE INDEX (LI) AND RISK OF BREAST CANCER: EVIDENCE WHATEVER THE RISK LEVEL

Prospective cohort, by PRS-defined risk level

Post-menopausal breast cancer

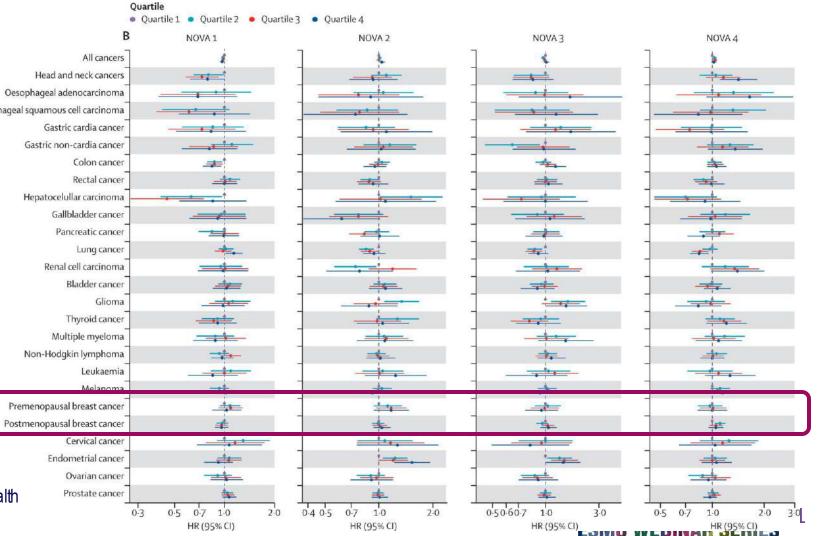


ESMO DEEP DIVE: BREAST CANCER

ESMO WEBINAR SERIES²⁰

NUTRITION: EMERGING TARGETS ULTRA PROCESSED FOOD CONSUMPTION

NOVA Food classification



De Oliveira Front Nutr 2022

Postmenopausal breast cancer NOVA1 vs 4 Multiadjusted HR 0.93, 0.90–0.97

Kliemann 2023 Lancet Planet Health

ESMO DEEP DIVE: BREAST CANCER

NUTRITION: EMERGING TARGETS

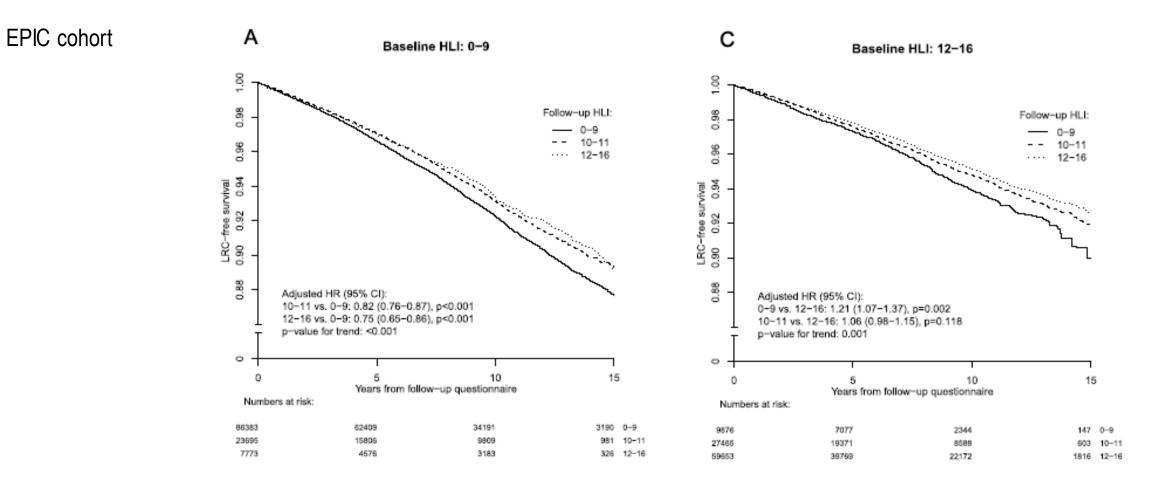
Many others emerging but limited evidence so far:

- Emulsifiers Sellem 2024 (HR = 1.24; 95% CI [1.03, 1.51]
- Western diet Castello 2024 (HR (95 % CI) 1.30 (0.98;1.72)
- Artificial sweeteners Debras 2023 HR = 1.22 [95% CI 1.01 to 1.48]
- Sugar drinks Chazelas 2019 1.22, 1.07 to 1.39
- Organic food....

LIFESTYLE CHANGES: IS PREVENTION POSSIBLE?

Towards stratified/personalized breast cancer prevention

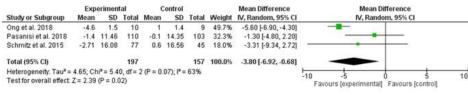
- How does it work?
- Epidemiological data
- Interventional results
- How and for whom?
- Conclusions



LIFESTYLE CHANGES AT MIDDLE AGE AND SUBSEQUENT RISK OF ANY CANCER

Decreased risk whatever the initial lifestyle index

ESMO DEEP DIVE: BREAST CANCER Botteri et al Eur J Epidemiol 2024


PRIMARY PREVENTION INTERVENTIONS ON EXPOSURE/LIFESTYLE FACTORS

Plenty of epidemiological data, very little prospective intervention data

Studies primarily on surrogates

Fat mass

Lean mass

	Expe	erimen	tal	c	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Ong et al. 2018	-2.4	1.3	10	-0.4	0.9	9	66.9%	-2.00 [-3.00, -1.00]	
Pasanisi et al. 2018	-0.4	4.95	110	-0.3	6.58	103	27.0%	-0.10 [-1.67, 1.47]	
Schmitz et al. 2015	-0.75	9.57	77	0.4	8.64	45	6.1%	-1.15 [-4.46, 2.16]	
Total (95% CI)			197			157	100.0%	-1.44 [-2.25, -0.62]	•
Heterogeneity: Chi#=	4.03, df =	= 2 (P =	= 0.13);	P= 50	36				
Test for overall effect	Z = 3.45	(P = 0	.0006)						-10 -5 0 5 10 Favours [experimental] Favours [control]

Body fat percentage

	Exp	erimenta	af	Control				Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Han et al. 2018	-1.4	0.0966	8	1	0.0966	7	65.5%	-2.40 [-2.50, -2.30]	
Ong et al. 2018	-1.9	1.2	10	0.6	1.1	9	22.1%	-2.50 [-3.53, -1.47]	
Pasanisi et al. 2018	-1.7	11.31	110	0.5	13.45	103	3.0%	-2.20 [-5.55, 1.15]	
Rezvani et al. 2018	0.39	9.81	23	-0.01	10.3	23	1.0%	0.40 [-5.41, 6.21]	
Schmitz et al. 2015	-2.16	9.79	76	0.2	9.97	45	2.5%	-2.36 [-6.01, 1.29]	
Simon et al. 1997	-0.1	6.95	67	-0.5	7.4	76	5.8%	0.40 [-1.95, 2.75]	
Total (95% CI)			294			263	100.0%	-2.22 [-2.82, -1.63]	•
Heterogeneity: Tau ^a =	0.14; Ch	ni= 6.37.	df = 5	(P = 0.2	7); 12 = 22	296			ta t 1
Test for overall effect.				0	-				-10 -5 0 5 Favours (experimental) Favours [control]

Body weight

	Exp	erimenta	al		Control			Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	
Han et al. 2018	-3.3	3.9417	8	2.2	3.9417	7	21.6%	-5.50 [-9.50, -1.50]		
Ong et al. 2018	-7	2.3	10	0.3	1.5	9	31.3%	-7.30 [-9.03, -5.57]		
Pasanisi et al. 2018	-1.9	15.34	110	-0.4	19.52	103	18.7%	-1.50 [-6.24, 3.24]		
Rezvani et al. 2018	0.67	20.08	23	0.03	21.7	23	5.3%	0.64 [-11.44, 12.72]	•	-
Schmitz et al. 2015	-3.52	24.19	77	0.3	23.56	45	8.8%	-3.82 [-12.57, 4.93]	•	
Simon et al. 1997	-0.63	19	67	-1.08	18.19	76	14.3%	0.45 [-5.67, 6.57]		
Total (95% CI)			295			263	100.0%	-3.99 [-7.00, -0.98]	-	
Heterogeneity: Tau ^a =	6.75; Cł	ni# = 11.3	5, df = 5	5(P = 0)	04); l ² = {	56%				
Test for overall effect									-10 -5 0 5 Favours [experimental] Favours [control]	10

Body mass index

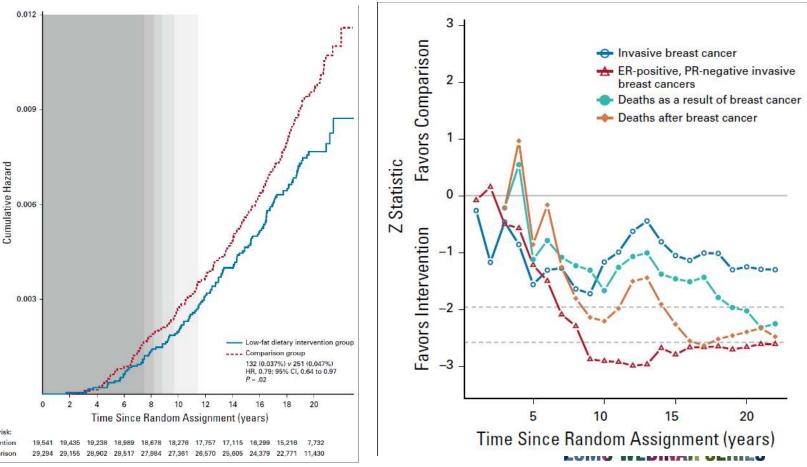
10

Experimental			Control			Mean Difference		Mean Difference		
Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
-1	0.6956	8	-0.5	0.6956	7	29.5%	-0.50 [-1.21, 0.21]			
-2.5	0.8	10	0.1	0.5	9	30.1%	-2.60 [-3.19, -2.01]	+		
-0.7	6,72	110	-0.1	6.79	103	20.6%	-0.60 [-2.42, 1.22]			
0.26	6.9	23	0	7.55	23	8.2%	0.26 [-3.92, 4.44]			
-1.21	8.66	77	0.1	8.98	45	11.6%	-1.31 [-4.57, 1.95]			
		228			187	100.0%	-1.18 [-2.57, 0.20]	-		
58; Ch	i#= 22.16	5, df = 4	(P=0.	0002); F	= 82%					
= 1.67	(P = 0.09))	-					-10 -5 0 5 Favours [experimental] Favours [control]		
	-1 -2.5 -0.7 0.26 -1.21 58; Ch	-1 0.6956 -2.5 0.8 -0.7 6.72 0.26 6.9 -1.21 8.66 58; Chi ^a = 22.16	-1 0.6956 8 -2.5 0.8 10 -0.7 6.72 110 0.26 6.9 23 -1.21 8.66 77 228	-1 0.6956 8 -0.5 -2.5 0.8 10 0.1 -0.7 6.72 110 -0.1 0.26 6.9 23 0 -1.21 8.66 77 0.1 228 58, Chi#= 22.16, df= 4 (P=0.	-1 0.6956 8 -0.5 0.6956 -2.5 0.8 10 0.1 0.5 -0.7 6.72 110 -0.1 6.79 0.26 6.9 23 0 7.55 -1.21 8.66 77 0.1 8.98 228 58, Chi ^p = 22.16, df = 4 (P = 0.0002); I ^p	-1 0.6956 8 -0.5 0.6956 7 -2.5 0.8 10 0.1 0.5 9 -0.7 6.72 110 -0.1 6.79 103 0.26 6.9 23 0 7.55 23 -1.21 8.66 77 0.1 8.98 45 228 187 58, Chi ^µ = 22.16, df = 4 (P = 0.0002); P = 82%	-1 0.6956 8 -0.5 0.6956 7 29.5% -2.5 0.8 10 0.1 0.5 9 30.1% -0.7 6.72 110 -0.1 6.79 103 20.6% 0.26 6.9 23 0 7.55 23 8.2% -1.21 8.66 77 0.1 8.98 45 11.6% 228 187 100.0% 58, Chi# = 22.16, df = 4 (P = 0.0002); I# = 82% 82%	-1 0.6956 8 -0.5 0.6956 7 29.5% -0.50 [-1.21, 0.21] -2.5 0.8 10 0.1 0.5 9 30.1% -2.60 [-3.19, -2.01] -0.7 6.72 110 -0.1 6.79 103 20.6% -0.60 [-2.42, 1.22] 0.26 6.9 23 0 7.55 23 8.2% 0.26 [-3.92, 4.44] -1.21 8.66 77 0.1 8.98 45 11.6% -1.31 [-4.57, 1.95] 228 187 100.0% -1.18 [-2.57, 0.20] 58; Chi ^µ = 22.16, df = 4 (P = 0.0002); I ^µ = 82% - - -		

INTERVENTIONS ON EXPOSURE/LIFESTYLE FACTORS

No. at risk

Comparison

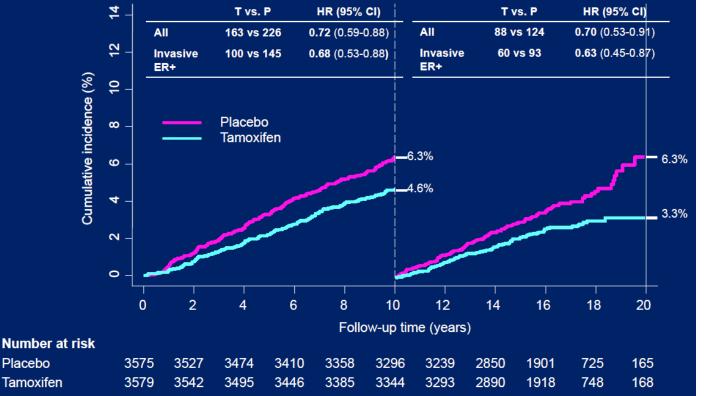

A major prospective study: Women's Health Initiative (WHI) Dietary Modification (DM) Intervention = low-calorie, low-fat diet versus standard diet

<u>IIIIEI VEITIIUIT</u> – 1010-Calone, 1010-1at ulet veisus stanuaru

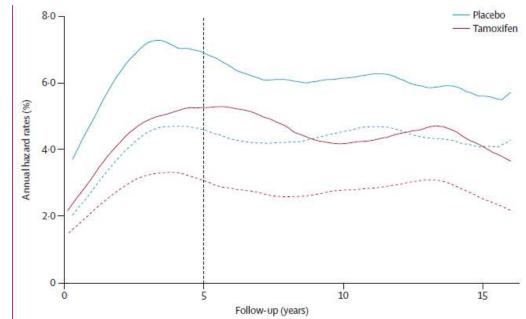
<u>Co-primary end points</u> = incident invasive breast cancer and colorectal cancer, to be analysed separately.

Risk of death from breast cancer HR, 0.79; 95% CI, 0.64 to 0.97

Chlebowski J Clin Oncol 2020 ESMO DEEP DIVE: BREAST CANCER


A NUTRITIONAL INTERVENTION COULD HAVE MORE EFFECT ON BC MORTALITY THAN ENDOCRINE TREATMENTS!!

			E	Breast Cancer Inc	idence	Deaths From Breast Cancer		
Trial	N	Follow-up ^a	Tamoxifen	Placebo	RR (95% CI)	Tamoxifen	Placebo	
Royal Marsden ^b	2,494	13.2 years	82	104	0.78 (0.58 to 1.04)	12	9	Not reported
			Tamoxifen	Placebo	HR (95% CI)	Tamoxifen	Placebo	OR (95% CI)
NSABP P-1 13,388	74 months (mean)	145	250	0.57 (0.46 to 0.70)	12	11	Not reported	
			Tamoxifen	Placebo	HR (95% CI)	Tamoxifen	Placebo	OR (95% CI)
IBIS-1 7,154	16.0 years (median)	251	350	0.71 (0.60 to 0.83)	31	26	1.19 (0.68 to 2.10)	
			Anastrozole	Placebo	HR (95% CI)	Anastrozole	Placebo	
IBIS-II 3,864	131 months (median)	85	165	0.51 (0.39 to 0.66)	2	3	Not reported	
			Exemestane	Placebo	HR (95% CI)	Exemestane	Placebo	HR (95% CI)
MAP.3 4,560	35 months (median)	11	32	0.35 (0.18 to 0.70)	1	0	Not reported	
			Low-fat	Control	HR (95% CI)	Low-fat	Control	HR (95% CI)
WHI DM	48 <mark>,</mark> 835ª	19.6 years (median)	1,299 (0.44%)	2,075 (0.46%)	0.95 (0.89 to 1.02)	132 (0.037%)	251 (0.047%)	0.79 (0.64 to 0.97)
			CEE	Placebo	HR (95% CI)	CEE	Placebo	HR (95% CI)
WHI CEE- alone	10,739	20.3 years (median)	238 (0.30%)	296 (0.37%)	0.78 (0.65 to 0.93)	30 (0.031%)	46 (0.046%)	0.60 (0.37 to 0.97)


ESMO DEEP DIVE: BREAST CANCER Chlebowski et al, J Clin Oncol 2020, JOP 2021

A MODEL FOR BREAST CANCER INTERCEPTION: LONG-TERM EFFECT OF 5 YEARS OF TAMOXIFEN IN THE IBIS-1 STUDY

Cumulative incidence for all breast cancer

Reprogramming breast tissue?

ESMO WEBINAR SERIES²⁸

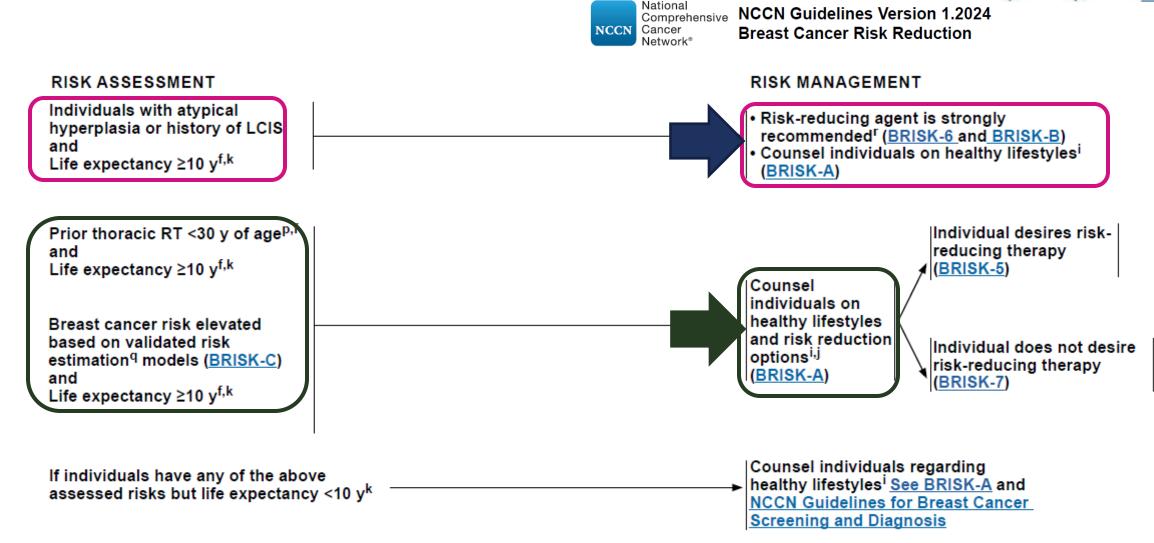
ESMO DEEP DIVE: BREAST CANCER

Cuzick et al Lancet Oncol 2015; SABCS 2023

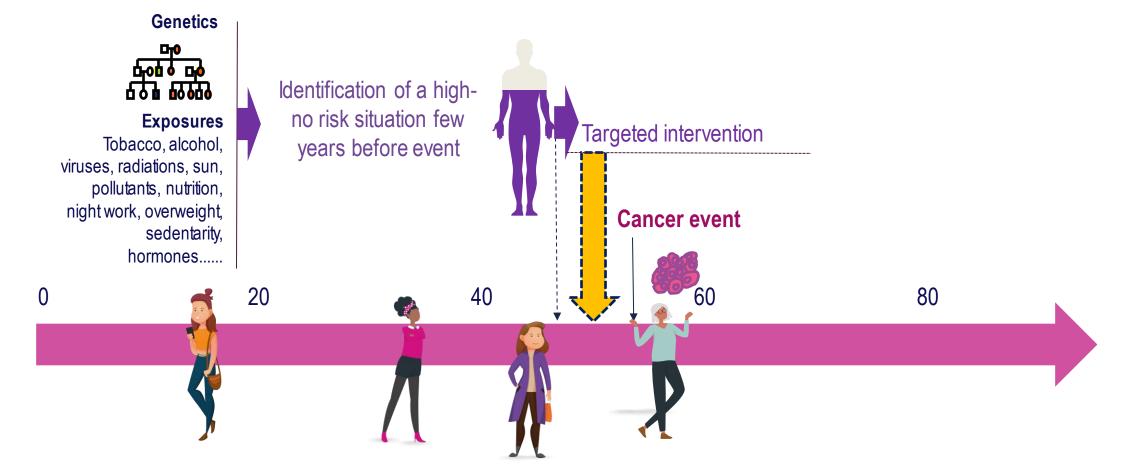
LIFESTYLE CHANGES: IS PREVENTION POSSIBLE?

Towards stratified/personalized breast cancer prevention

- How does it work?
- Epidemiological data
- Interventional results
- How and for whom?
- Conclusions



INTERNATIONAL RECOMMENDATIONS FOR WOMEN AT HIGHER RISK OF BREAST CANCER: NCCN 2024



ESMO WEBINAR SER

30

HOW TO DELIVER THIS PREVENTION? BEYOND GENERAL INTERVENTIONS: PERSONALISED RISK REDUCTION FOR HIGH RISK INDIVIDUALS

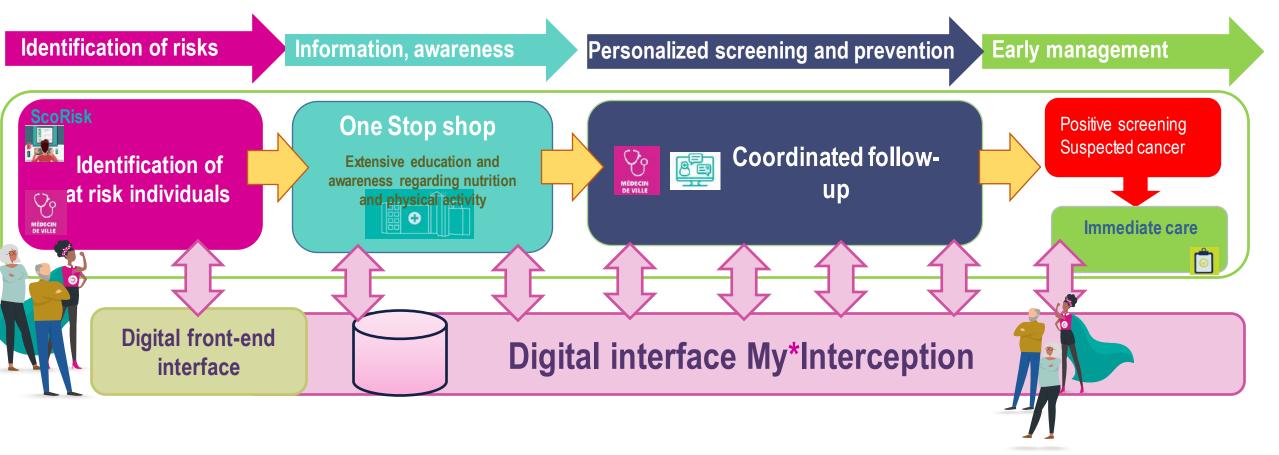
Suzette Delaloge

HOW TO DELIVER PREVENTION / RISK REDUCTION? THREE MAJOR ISSUES

Equitable interventions are absolutely necessary!

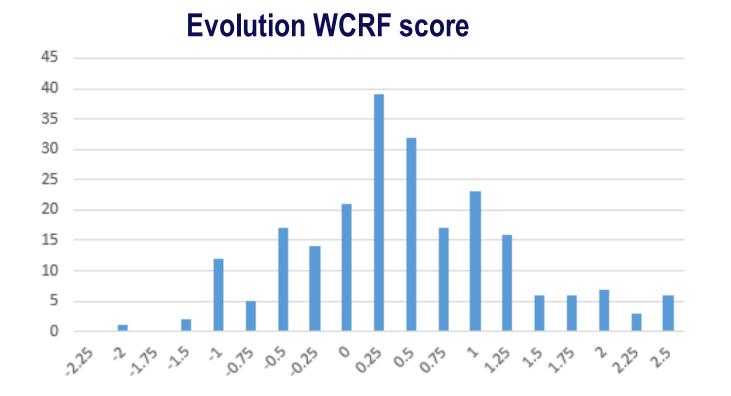
Beware of short-sightedness : biomarkers and intermediate objectives are instrumental

Take the environment into account



ESMO WEBINAR SERIES

NEED FOR DEDICATED HEALTH CARE PREVENTION PATHWAYS


The full pathway includes 4 indivisible pillars:

ESMO DEEP DIVE: BREAST CANCER

EARLY RESULTS OF THE INTERCEPTION PROGRAMME: 1-YEAR IMPROVEMENT IN WCRF PROFILE

N=324 respondents at 1 year 30% gained 1 WCRF point

ESMO WEBINAR SERIES³⁴

LIFESTYLE CHANGES: IS PREVENTION POSSIBLE?

Towards stratified/personalized breast cancer prevention

- How does it work?
- Epidemiological data
- Interventional results
- How and for whom?
- Conclusions

Conclusions

- Up to 25% breast cancers avoidable trhough lifestyle modifications
- Lifestyle exposures including BMI, nutritional profile and physical activity are targets of interest for breast cancer prevention both in the general population, and among women at increased risk
- Translating from the immense amount of epidemiological data and interventions is not obvious....
- Personalised prevention of breast cancer is emerging
- Simple risk-reduction measures associated with strong levels of evidence are good achievable targets associated with demonstrated benefits ^(C)

ESMO DEEP DIVE: BREAST CANCER

EMERGING DATA ON HOW TO DEAL WITH HEREDITARY RISK

Shani Paluch-Shimon, MBBS, MSc

Hadassah University Hospital Jerusalem, Israel

DECLARATIONS OF INTEREST

Roche: Speakers bureau, honoraria, consultancy, travel Astra Zeneca: Speakers bureau, honoraria, consultancy Novartis: Speakers bureau, honoraria, consultancy Pfizer: Speakers bureau, honoraria, consultancy Lilly: Speakers bureau, honoraria, consultancy MSD: Speakers bureau, honoraria, consultancy Exact Sciences/Rhenium: Speakers bureau, honoraria Gilead: Consultancy, speakers bureau Stemline: Consultancy

BACKGROUND

Germline pathogenic variants (PV) in \sim 6*-17^{\%} of contemporary breast cancer (BC) cohorts Most common germline PVs amongst patients with BC – *BRCA1*, *BRCA2*

BRCA1/2 pathogenic variants (PV) - ↑ prevalence in younger women with BC, TNBC, FHx of BC or Ovarian cancer (+ other malignancies) and in certain ethnic groups (Ashkenazi Jewish)

A PV in BRCA1/2 confers a lifetime risk of 35-90% of BC

What we find in terms of hereditary predisposition genes including prevalence will depend on where we look (cohort): Age – *BRCA1/2* – higher prevalence of early onset breast cancer Subtype Stage of disease Ethnicity

ESMO DEEP DIVE: BREAST CANCER

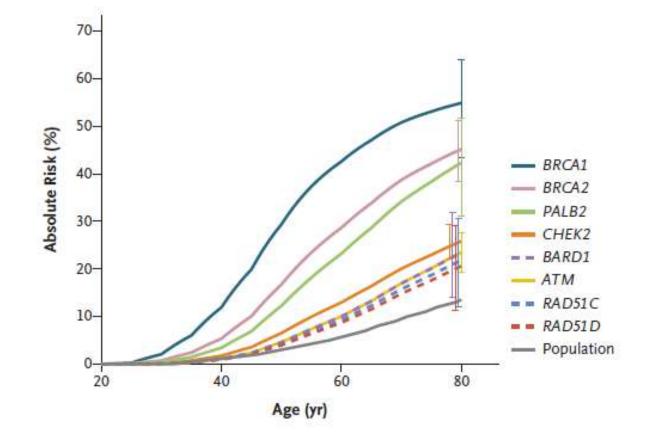
BC=Breast Cancer TNBC=Triple Negative Breast Cancer PV=pathogenic variant

"Other" non-BRCA1/2 moderate-high penetrance genes

↑ use of multi-gene germline panel tests - ↑ identification of other moderate-high penetrance genes
 ↑ use of genomic testing in ABC - ↑ identification of germline pathogenic variants

For non-*BRCA1/2* moderate-high penetrance genes – limited data or evidence on:

- Screening
- Appropriate risk-reducing measures
- Optimal oncological management surgery, systemic treatment, radiotherapy


For non-*BRCA1/2* moderate-high penetrance genes – limited yet growing body of data on phenotype and disease course

BACKGROUND

Lifetime risk of breast cancer

ESMO DEEP DIVE: BREAST CANCER

BCAC, NEJM, 2021; Hu et al, NEJM, 2021

Cumulative Breast Cancer Risk amongst BRCA1/2 mutation carriers

Table 2. Breast and Ovarian Cancer Incidence Rates Per 1000 Person-Years, Kaplan-Meier Estimates of the Cumulative Risks, and Standardized Incidence Rates by 10-Year Age Groups

Age, During Follow-up, y ^a	No. of Women Contributing in Age Category ^a	No. of Person-Years	No. of Events	Incidence per 1000 Person-Years (95% CI)	Cumulative Risk, % (95% CI) ^b	Standardized Incidence Rate (95% CI) ^c
Breast Cancer						
RCA1 mutation carriers						
≤20	53	74.0	0	0		
21-30	605	2222.5	13	5.9 (3.4-10.1)	4 (2-7)	73.7 (42.9-126.8)
31-40	1048	3831.6	90	23.5 (19.1-28.9)	24 (21-29)	46.2 (37.3-57.1)
41-50	870	3317.8	94	28.3 (23.1-34.7)	43 (39 48)	17.2 (14.0-21.2)
51-60	479	1905.9	49	25.7 (19.4-34.0)	56 (51-61)	9.7 (7.2-12.9)
61-70	201	761.3	19	25.0 (15.9-39.1)	66 (61-72)	7.0 (4.5-11.0)
71-80	55	243.0	4	16.5 (6.2-43.9)	72 (65-79)	4.8 (1.8-12.8)
Total	2276 ^d	12356.1	269	21.8 (19.3-24.5)		16.6 (14.7-18.7)
RCA2 mutation carriers						
≤20	30	44.0	0	0		
21-30	329	1046.0	5	4.8 (2.0-11.5)	4 (2-9)	60.8 (25.5-144.9)
31-40	625	2136.1	23	10.8 (7.2-16.2)	13 (9-19)	20.3 (13.5-30.5)
41-50	669	2365.0	65	27.5 (21.6-35.1)	35 (29-41)	16.4 (12.9-20.9)
51-60	384	1437.2	44	30.6 (22.8-41.1)	53 (46-59)	11.4 (8.4-15.5)
61-70	174	610.2	14	22.9 (13.6-38.7)	61 (55-68)	6.4 (3.8-10.7)
71-80	68	274.6	6	21.9 (9.8-48.6)	69 (61-77)	6.6 (3.0-14.7)
Total	1610 ^d	7913.1	157	19.8 (17.0-23.2)		12.9 (11.1-15.1)

Average estimated cumulative lifetime breast cancer risks

	Population	BRCA1	BRCA2	ATM	CHEK2 (1100delC)	CHEK2 (I157T)	PALB2
<40	0.5%	24%	13%	1.4%	1.5%	0.8%	4%
40-49	2%	43%	35%	5.6%	5.9%	3.2%	14%
50-59	4.4%	56%	53%	11.8%	12.6%	6.8%	26%
60-69	8%	66%	61%	20.8%	22.1%	12.3%	35%
CLTR (80)	12%	72%	69%	30%	31.8%	18.3%	44%

LIFETIME CANCER RISK IN HBOC ASSOCIATED PV

	Breast cancer ^a	Tubo-ovarian cancers ^b	Pancreatic cancer ^c	Colon cancer ^d	Other cancers
ATM	Yes 25%-30%	Yes ≤5%	Yes <5%	No	Prostate 30%
BARD1	Yes ~ 20%	No	No	No	No
BRCA1	Yes >60%	Yes 40%-60%	Yes <5%	No	
BRCA2	Yes >60%	Yes 15%-30%	Yes <5%	No	Prostate 33%
BRIP1	No	Yes 5%-10%	No	No	No
CDH1	Yes (LBC) 40%	No	No	No	Diffuse gastric cancer 35%-45%
CHEK2	Yes 25%-30%	No	No	Yes 15%	
PALB2	Yes 40%-60%	Yes 3%-5%	Yes 2%-3%	No	No
PTEN	Yes 40%	No	No	Yes 10%	Thyroid 20%; endometrial 20%
RAD51C	Yes 20%	Yes 10%	No	No	No
RAD51D	Yes 10%	Yes 10%	No	No	No
STK11	Yes 40%	No	Yes 10%-30%	Yes 30%	Gastric 30%; Sertoli-Leydig 10%-20%
TP53	Yes	No	Possibly	Possibly	Sarcoma, brain, leukaemia,

HBOC=hereditary breast & ovarian cancer syndrome; PV=pathogenic variant

HEREDITARY BREAST CANCER SYNDROME – HOW DOES THIS CHANGE PATIENT MANAGEMENT?

Risk management-screening & risk reducing measures (individual, family, population) **Local management**

- Lumpectomy vs mastectomy
- Bilateral mastectomy?

Systemic therapy

Early breast cancer – PARP inhibitors

Advanced breast cancer -BRCA1/2, PALB2 - PARP inhibitors, platinum agents

Reproductive considerations

Ongoing follow-up & survivorship

IMPORTANT CONSIDERATIONS

Different genes, different risks, different management

- Not all HBOC syndromes are created equal different gene PVs, different risks
- . HBOC syndromes can be divided into high risk & low-moderate risk the approach to screening and risk-reduction should be tailored according to risk combined with family history
- Validated risk assessment tools (such as CanRisk (<u>https://www.canrisk.org/</u>) may be used to aid individual risk management [C]
- Risk-reducing mastectomy is most beneficial in women with a high risk PV
- Frequency and modality of breast imaging will be different for the different HBOC syndromes
- . RRBSO should not be performed unless there is an associated ovarian cancer risk or a therapeutic indication, and should not be performed earlier than clinically indicated it has far reaching impact on women's health!!

INDIVIDUALIZING RISK

INDIVIDUALIZING RISK

Same mutation, different individual, different risk

To tailor risk assessment eed to:

- Incorporate risk factors family history, mammographic breast density, reproductive factors, polygenic risk score
- . Use of validated risk prediction models & tools:

www.Canrisk.org

 Risk management should be individualised and, when available, validated tools should be used to aid decision making [B].

Sessa....Paluch-Shimon, Annals of Oncology, 2023



What is CanRisk?

CanRisk is an online tool that enables healthcare professionals to calculate an individual's future risks of developing *breast and ovarian cancer* using cancer family history, genetic and other risk factors. CanRisk also calculates mutation carrier probabilities in breast and ovarian cancer susceptibility genes.

What does CanRisk do?

CanRisk uses the BOADICEA v6 model to calculate breast and ovarian cancer risks based on information entered for the individual which can include personal risk factors, cancer family history, genetic testing for high- and moderate-risk genes, polygenic scores and mammographic density (click to see what information is used [2]). It presents the cancer risks in textual and graphical

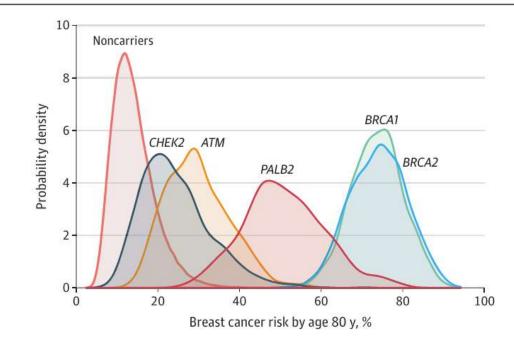
CanRisk is designed for use by healthcare professionals to help them communicate and discuss breast and ovarian cancer risk with their patients.

Endorsements

- NICE | The National Institute for Health and Care Excellence
 - Breast Cancer
- Ovarian Cancer 🖸
- UK Cancer Genetics Group guidelines
- Ontario Breast Screening program 🖸
- eviQ Australian guidelines for health professionals [2]
- <u>NCCN | National Comprehensive</u>
 Cancer Network 52

POLYGENIC RISK SCORE

- Combined risk from multiple risk inducing single nucleotide polymorphisms (SNPs) from GWAS studies
- Explain approximately 30% of breast cancer hereditability
- Combined with other risk factors & risk prediction models can help tailor risk estimates
 - Example study by Gao et al was able to classify >30% of CHEK2 & 50% of ATM carriers with an estimated lifetime risk <20%
- Limitations? Most GWAS studies on women >50 and Caucasian
- Challenges? Communicating risk


GWAS=genome wide association studies

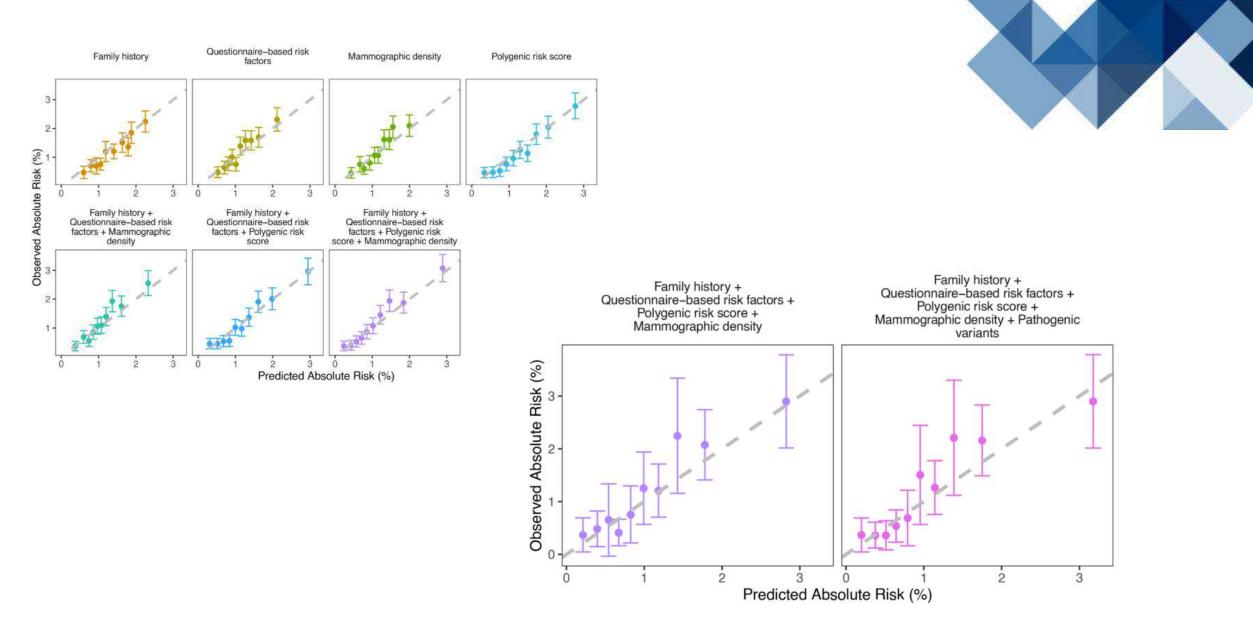

POLYGENIC RISK SCORE

Figure. Modification of Lifetime Breast Cancer Risk for Pathogenic Variant Carriers and Noncarriers by an 86-Single-Nucleotide Variant Score

Gallagher et al, JAMA network open, 2020

ESMO DEEP DIVE: BREAST CANCER

Yang et al, Journal of Med Genetics, 2022

ESMO DEEP DIVE: BREAST CANCER

INDIVIDUALIZING RISK Penetrance and prognosis can differ between different types of PVs

Missense PVs in both functionally important domains (RING and BRCT) in BRCA1 are associated with lower risks

- of BC than protein truncating (PTC) variants
 - Cumulative risk by age 70 for BRCA1 PTC was 70% compared with a missense PV in the BCRT domain
 - Differences less pronounced in *BRCA2*, but slightly lower risk for missense mutations in families where Dx was >50yro
 - For women >50 at Dx with a *BRCA* missense PV risk level similar to moderate penetrance PVs

Li et al, Genet Med, 2023

SCREENING & RISK REDUCTION

INTENSIFIED SCREENING FOR BREAST CANCER

- Women with HBOC should be offered intensified screening if they do not opt for RRM [A].
- Breast MRI should be considered the essential component of intensified screening programmes [A].
- In the presence of a *BRCA1*, *BRCA2* or *PALB2* PV intensified screening should start at age 30, or 5 years younger than the youngest family member with breast cancer [A].
- Annual screening intervals are recommended, except for *BRCA1*, where 6-monthly screening should be considered [A].
- If half-yearly screening is considered, this may be best achieved by annual MRI and, depending on availability, resources and local guidelines, the following imaging may be considered in between annual MRI studies:
- in carriers 30-39 years of age, ultrasound with or without mammography [C]
- in carriers \geq 40 years of age, mammography with or without ultrasound [C]

RRM=risk reducing mastectomy

ESMO DEEP DIVE: BREAST CANCER

INTENSIFIED SCREENING FOR BREAST CANCER

- Women with PVs in *ATM*, *BARD1*, *CHEK2* (truncating), *RAD51C* or *RAD51D* should have comprehensive assessment of breast cancer risk to determine eligibility for breast MRI[C].
- In the presence of *CDH1*, *PTEN* or *STK11* PVs, intensified breast screening should start at age 30, or 5 years younger than the youngest family member with breast cancer and from age 20 for *TP53* [A].

RISK REDUCING SURGERY – BREAST CANCER

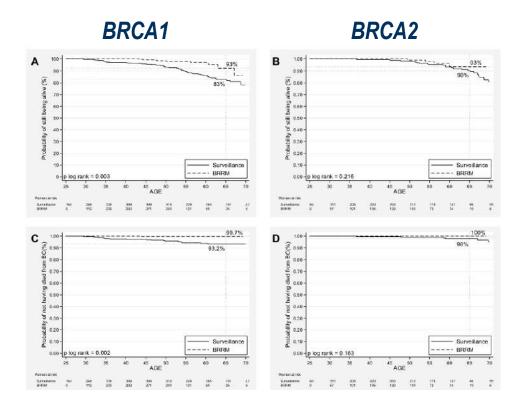
BRRM is the most effective method for reducing breast cancer risk for *BRCA1/2* carriers and should be discussed in the context of individually tailored decision making [B].

BRRM should be discussed in carriers of other high-risk genes alongside family history – *TP53*, *PTEN*, *STK11*, *CDH1* and *PALB2* [C].

NSM is a reasonable alternative to TM [C].

Immediate reconstruction is safe and should be offered [C].

In women with stage I-III high-risk PV-associated breast cancer (not including *TP53*), breastconservation with therapeutic radiation is a safe alternative to RRM. RRM should be considered within the context of disease prognosis, risks and benefits, and patient preference [C].


ESMO DEEP DIVE: BREAST CANCER

BRRM=bilateral risk-reducing mastectomy; NSM-nipple-sparing mastectomy; TM=total mastectomy; PV=pathogenic variant

RISK REDUCING MASTECTOMY – UNAFFECTED CARRIERS

Conflicting data whether risk reducing mastectomy impacts survival in unaffected carriers

Heemskerk-Gerritsen et al, BCRT, 2019

•

RISK REDUCING MEDICATION IN BRCA CARRIERS

Tamoxifen

- . NSABP-P1 sub-study too small to draw conclusions
- Some retrospective studies suggesting benefit
- Self-reporting study on Tamoxifen use suggested reduced risk of BC in BRCA carriers

Aromatase inhibitors

- . LIBER study under-powered no benefit of Letrozole vs placebo
- Retrospective study, in women with BC, aromatase inhibitors reduce the risk of CBC in BRCA carriers

No data in non-BRCA pathogenic variants, strong rationale exists – for example ATM & CHEK2 mostly associated wit hormone positive breast cancers!

King et al, JAMA 2001; Phillips et al, JCO, 2013; Shafaee et al, BCRT, 2022; Pujol et al, JCO 2020; Kostopoulos, BRT, 2023

ESMO DEEP DIVE: BREAST CANCER

OVARIAN CANCER RISK-REDUCTION

The most effective strategy for ovarian cancer risk reduction in BRCA1/2 PV carriers is RRBSO [A].

- RRBSO should be carried out in women who have completed childbearing, at age 35-40 for *BRCA1* PV carriers and at age 40-45 for women with *BRCA2* PVs. Timing of surgery should take into consideration family history [B]
- Risk-reducing salpingectomy (bilateral salpingectomy alone or bilateral salpingectomy followed by delayed oophorectomy) are not recommended outside the setting of a clinical trial [C].

RRBSO should be considered in women who have completed childbearing who are carriers of PVs in *BRIP1*, *RAD51C*, *RAD51D* at age 45-50. RRBSO may be considered for post-menopausal women with a *PALB2* PV [C].

PV=pathogenic variant, RRBSO=risk-reducing bilateral salpingo-oophorectomy

OVARIAN CANCER RISK-REDUCTION

ESMO WEBINAR SERIES

- The PV type, patient's preferences and family history should be taken into consideration when deciding the timing of RRBSO.
- It should be delayed until an age when ovarian cancer risk is increased above that of the general population.
- Performing RRBSO before the necessary age can have a negative impact on a woman's health including all the consequences of premature menopause (increased risk of osteoporosis, cognitive dysfunction, cardiovascular disease and early mortality) thus appropriate timing is critical.

PV=pathogenic variant, RRBSO=risk-reducing bilateral salpingo-oophorectomy

MANAGEMENT OF RISK IN AFFECTED CARRIERS

BCS vs Mastectomy

- BCS is a legitimate and safe choice
- Therapeutic radiation is safe:
 - Reduces local ipsilateral recurrence
 - Does not increase contra-lateral disease
- Contralateral radiation?

Prophylactic irradiation to the contralateral breast for BRCA mutation carriers with early-stage breast cancer

E. Evron^{1,2+}, A. M. Ben-David^{3,4+}, H. Goldberg⁵⁺, G. Fried⁶, B. Kaufman^{3,4}, R. Catane^{3,4}, M. R. Pfeffer⁷, D. B. Geffen^{8,9}, P. Chernobelsky⁸⁺, T. Karni¹⁰, R. Abdah-Bortnyak⁶, O. Rosengarten¹¹, D. Matceyevsky¹², M. Inbar⁷, A. Kuten⁶ & B. W. Corn^{11*}

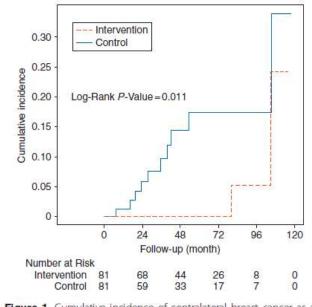
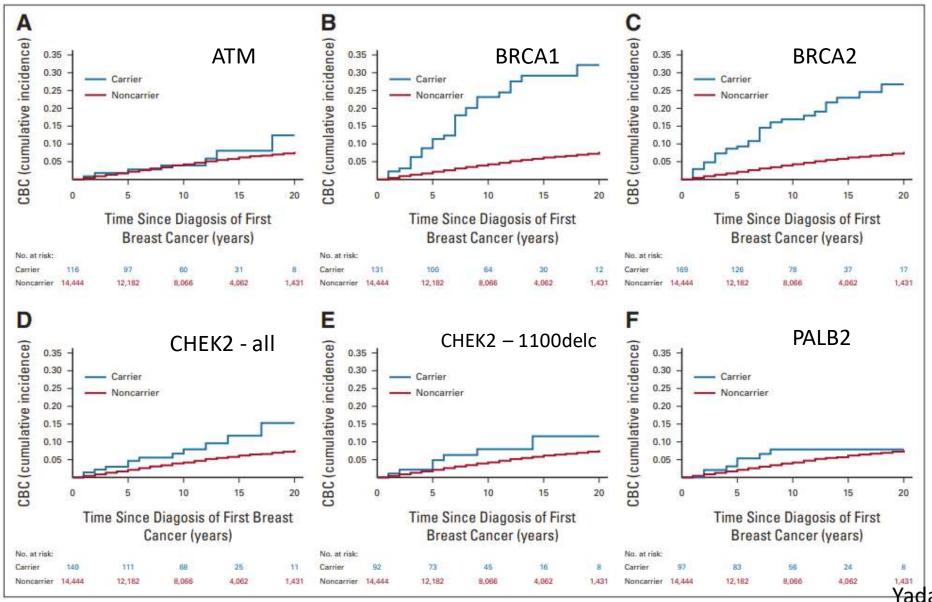



Figure 1. Cumulative incidence of contralateral breast cancer as a first event.

- Contralateral mastectomy some studies suggest that there may be a long term survival benefit
- Decision must be tailored to individual's needs

Risk of contralateral breast cancer?

Yadav et al, JCO, 2023

Contralateral Breast Cancer Risk by Menopausal Status at First Breast Ca Diagnosis

Cumulative

	Pre- menopausal	Post- menopausal
Non-carriers	5.8%	3.7%
BRCA1	33%	11%
BRCA2	27%	9.5%
ATM	2.9%	4.6%
CHEK2	13%	4.3%
*: Unadjusted analys	sis	

Adjusted Hazard Ratios

Yadav et al, JCO, 2023

RISK OF CONTRALATERAL BC BY SUBTYPE & GERMLINE PV

TABLE 2. Contralateral Breast Cancer Risk Among Germline PV Carriers by ER Status

		Overall				ER-Positive ^a		6		ER-Negative ^a	
Total, No.	CBC	HR (95% CI) ^b	P	Total, No.	CBC	HR (95% CI) ^b	P	Total, No.	CBC	HR (95% CI) ^b	P
14,444	711	-	-	10,989	462		-	2,391	157		
116	7	1.2 (0.6 to 2.6)	.56	92	5	1.4 (0.6 to 3.3)	.48	14	1	ND	ND
132	31	2.7 (2.0 to 3.8)	< .001	42	7	3.1 (1.7 to 5.6)	< .001	79	23	< .001	< .001
170	33	3.0 (2.1 to 4.3)	< .001	105	18	3.3 (2.0 to 5.5)	< <mark>.0</mark> 01	52	10	< .001	.002
140	12	1.9 (1.1 to 3.3)	.03	121	11	2.0 (1.1 to 3.5)	.02	12	1	ND	ND
92	7	1.9 (0.9 to 3.8)	.07	79	7	2.2 (1.1 to 4.5)	.02	9	0	ND	ND
97	7	1.3 (0.6 to 2.6)	.50	54	1	0.4 (0.1 to 2.8)	.37	33	6	2.9 (1.4 to 6.4)	.006
	14,444 116 132 170 140 92	14,444 711 116 7 132 31 170 33 140 12 92 7	Total, No. CBC HR (95% Cl) ^b 14,444 711 — 116 7 1.2 (0.6 to 2.6) 132 31 2.7 (2.0 to 3.8) 170 33 3.0 (2.1 to 4.3) 140 12 1.9 (1.1 to 3.3) 92 7 1.9 (0.9 to 3.8)	Total, No. CBC HR (95% Cl) ^b P 14,444 711 116 7 1.2 (0.6 to 2.6) .56 132 31 2.7 (2.0 to 3.8) <.001	Total, No.CBCHR (95% Cl)bPTotal, No.14,444711 $ -$ 10,98911671.2 (0.6 to 2.6).5692132312.7 (2.0 to 3.8)<.001	Total, No.CBCHR (95% Cl) ^b PTotal, No.CBC14,444711 $$ $-$ 10,98946211671.2 (0.6 to 2.6).56925132312.7 (2.0 to 3.8)<.001	Total, No.CBCHR (95% Cl) ^b PTotal, No.CBCHR (95% Cl) ^b $14,444$ 711 $$ $10,989$ 462 $$ 116 7 $1.2 (0.6 \text{ to } 2.6)$ $.56$ 92 5 $1.4 (0.6 \text{ to } 3.3)$ 132 31 $2.7 (2.0 \text{ to } 3.8)$ $< .001$ 42 7 $3.1 (1.7 \text{ to } 5.6)$ 170 33 $3.0 (2.1 \text{ to } 4.3)$ $< .001$ 105 18 $3.3 (2.0 \text{ to } 5.5)$ 140 12 $1.9 (1.1 \text{ to } 3.3)$ $.03$ 121 11 $2.0 (1.1 \text{ to } 3.5)$ 92 7 $1.9 (0.9 \text{ to } 3.8)$ $.07$ 79 7 $2.2 (1.1 \text{ to } 4.5)$	Total, No.CBCHR (95% Cl)bPTotal, No.CBCHR (95% Cl)bP $14,444$ 711 $ 10,989$ 462 $ 116$ 7 $1.2 (0.6 to 2.6)$ $.56$ 92 5 $1.4 (0.6 to 3.3)$ $.48$ 132 31 $2.7 (2.0 to 3.8)$ $<.001$ 42 7 $3.1 (1.7 to 5.6)$ $<.001$ 170 33 $3.0 (2.1 to 4.3)$ $<.001$ 105 18 $3.3 (2.0 to 5.5)$ $<.001$ 140 12 $1.9 (1.1 to 3.3)$ $.03$ 121 11 $2.0 (1.1 to 3.5)$ $.02$ 92 7 $1.9 (0.9 to 3.8)$ $.07$ 79 7 $2.2 (1.1 to 4.5)$ $.02$	Total, No.CBCHR (95% CI) ^b PTotal, No.CBCHR (95% CI) ^b PTotal, No. $14,444$ 711 $ 10,989$ 462 $ 2,391$ 116 7 $1.2 (0.6 to 2.6)$ $.56$ 92 5 $1.4 (0.6 to 3.3)$ $.48$ 14 132 31 $2.7 (2.0 to 3.8)$ $<.001$ 42 7 $3.1 (1.7 to 5.6)$ $<.001$ 79 170 33 $3.0 (2.1 to 4.3)$ $<.001$ 105 18 $3.3 (2.0 to 5.5)$ $<.001$ 52 140 12 $1.9 (1.1 to 3.3)$ $.03$ 121 11 $2.0 (1.1 to 3.5)$ $.02$ 12 92 7 $1.9 (0.9 to 3.8)$ $.07$ 79 7 $2.2 (1.1 to 4.5)$ $.02$ 9	Total, No.CBCHR (95% Cl) ^b PTotal, No.CBCHR (95% Cl) ^b PTotal, No.CBC $14,444$ 711 $ 10,989$ 462 $ 2,391$ 157 116 7 $1.2 (0.6 \text{ to } 2.6)$ $.56$ 92 5 $1.4 (0.6 \text{ to } 3.3)$ $.48$ 14 1 132 31 $2.7 (2.0 \text{ to } 3.8)$ $<.001$ 42 7 $3.1 (1.7 \text{ to } 5.6)$ $<.001$ 79 23 170 33 $3.0 (2.1 \text{ to } 4.3)$ $<.001$ 105 18 $3.3 (2.0 \text{ to } 5.5)$ $<.001$ 52 10 H40 12 $1.9 (1.1 \text{ to } 3.3)$ $.03$ 121 11 $2.0 (1.1 \text{ to } 3.5)$ $.02$ 12 1 92 7 $1.9 (0.9 \text{ to } 3.8)$ $.07$ 79 7 $2.2 (1.1 \text{ to } 4.5)$ $.02$ 9 0	Total, No. CBC HR (95% Cl) ^b P Total, No. CBC HR (95% Cl) ^b P Total, No. CBC HR (95% Cl) ^b 14,444 711 - - 10,989 462 - - 2,391 157 - 116 7 1.2 (0.6 to 2.6) .56 92 5 1.4 (0.6 to 3.3) .48 14 1 ND 132 31 2.7 (2.0 to 3.8) <.001

Yadav et al, JCO, 2023

RISK OF CONTRALATERAL BC BY GERMLINE PV, SUBTYPE & MENOPAUSAL STATUS

					Prem	enopausal						
		Ov	erall			ER-Po	ositiveª			ER-	Negative ^a	
Germline PV Carrier Status	Total, No. (%)	CBC, No.	HR (95% CI) ^b	P	Total, No. (%)	CBC, No.	HR (95% CI) ⁶	P	Total, No. (%)	CBC, No.	HR (95% CI) ^b	P
Noncarriers ^c	3,775 (93.1)	251	—		2,775 (93.9)	147	—	_	781 (90.8)	74	-	1000
ATM	38 (0.9)	3	1.1 (0.4 to 2.7)	.87	31 (1.0)	1	ND	ND	2 (0.2)	1	ND	ND
BRCA1	70 (1.7)	25	3.6 (2.5 to 5.2)	< .001	26 (0.9)	7	4.8 (2.6 to 8.7)	< .001	41 (4.8)	18	3.5 (2.1 to 5.8)	< .001
BRCA2	71 (1.8)	21	2.9 (1.8 to 4.8)	< .001	47 (1.6)	13	3.4 (1.8 to 6.6)	< .001	19 (2.2)	7	3.3 (1.6 to 6.6)	< .001
CHEK2												
All PVs ^d	62 (1.5)	7	2.0 (1.0 to 4.2)	.06	54 (1.8)	7	2.5 (1.2 to 5.4)	.01	4 (0.5)	0	ND	ND
c.1100delC	40 (1.0)	5	2.5 (1.1 to 5.5)	.02	35 (1.2)	5	3.2 (1.4 to 7.3)	.007	3 (0.3)	0	ND	ND
PALB2	36 (0.9)	4	1.6 (0.6 to 4.1)	.33	20 (0.7)	0	ND	ND	13 (1.5)	4	3.7 (1.5 to 9.0)	.003

Germline PV	<u></u>	Ove	erall		7 1	ER-Posi	tiveª			ER-Neg	ativeª	
Carrier Status	Total, No. (%)	CBC, No.	HR (95% CI) ^b	P	Total, No. (%)	CBC, No.	HR (95% CI) ^b	P	Total, No. (%)	CBC, No.	HR (95% CI) ^b	P
Noncarriers	10,669 (96.6)	467	-		8,214 (97.2)	<mark>3</mark> 22			1,610 (93.5)	83		
ATM	78 (0.7)	4	1.3 (0.5 to 3.6)	.58	61 (0.7)	4	1.8 (0.7 to 4.8)	.25	12 (0.7)	0	ND	ND
BRCA1	62 (0.6)	6	1.6 (0.7 to 3.6)	.24	16 (0.2)	0	ND	ND	38 (2.2)	5	2.3 (0.9 to 5.6)	.07
BRCA2	<mark>99 (</mark> 0.9)	11	3.0 (1.7 to 5.2)	< .001	58 (0.7)	5	2.7 (1.1 to 6.5)	.03	33 (1. <mark>9</mark>)	3	2.6 (0.9 to 7.7)	.09
CHEK2												
All PVs ^d	78 (0.7)	5	1.6 (0.7 to 3.9)	.24	67 (0.8)	4	1.5 (0.7 to 3.8)	.45	8 (0.5)	1	ND	ND
c.1100delC	52 (0.5)	2	ND	ND	44 (0.5)	2	ND	ND	6 (0.3)	0	ND	ND
PALB2	61 (0.6)	3	1.0 (0.3 to 3.3)	.95	34 (0.4)	1	ND	ND	20 (1.2)	2	2.2 (0.5 to 9.3)	.28

Yadav et al, JCO, 2023

DOES CRRM IMPROVE SURVIVAL?

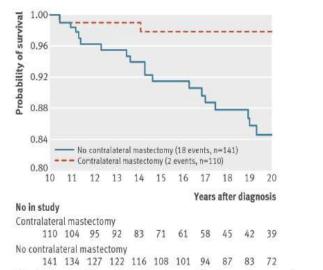


Fig 2 Survival from 10 to 20 years after breast cancer, by contralateral mastectomy

Stage 1 & 2 at Dx Most were <50 at Dx

Metcalfe, BMJ, 2014

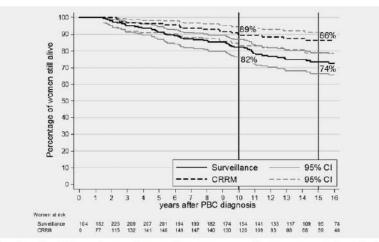
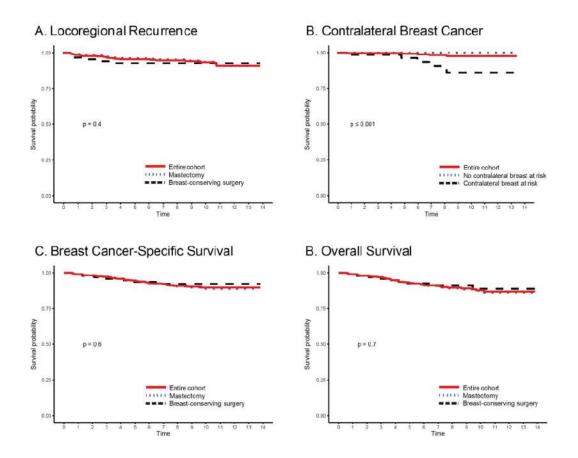


Figure 2. Unadjusted overall survival curves for BRCA1/2-associated breast cancer patients (including patients who deceased or had distant metastases within 2 years after primary breast cancer (PBC) diagnosis) opting for contralateral risk-reducing mastectomy (CRRM) versus not poting for risk-reducing mastectomy (Surveillance), using the Simon and Makuch method—which takes into account the change in an indiridual's covariate status over time—with years after PBC diagnosis as the time variable.

Greatest benefit in <40 & low risk/favorable features


Heemskerk-Gerritsen, Int J Cancer, 2015

ESMO WEBINAR SERIES

ESMO DEEP DIVE: BREAST CANCER

DOES CRRM IMPROVE SURVIVAL?

Shubeck et al, Ann of Surg Oncol, 2022

ESMO DEEP DIVE: BREAST CANCER

ESMO WEBINAR SERIES

What's happening in the clinic?

Table 1. Characteristics of the Study Population

	Gene with variar	nt, No. (%) of particip	ants				
Characteristic	All (N = 684)	BRCA1 (n = 235)	BRCA2 (n = 217)	PALB2 (n = 121)	ATM (n = 50)	CHEK2 (n = 61)	P value
Age at first breast cancer diagnosis, mean (range), y	53 (23-83)	50 (23-74)	54 (27-82)	54 (23-83)	58 (36-76)	57 (28-77)	NA
Race and ethnicity ^a							
Asian	4 (1)	1 (0)	1(1)	2 (2)	0	0	
Black	32 (5)	16 (7)	9 (4)	6 (5)	1 (2)	0	
White	623 (91)	210 (89)	203 (94)	106 (88)	46 (92)	58 (95)	.47
Other	3 (0)	1 (0)	1(1)	1(1)	0	0	
Unknown	22 (3)	7 (3)	3 (1)	6 (5)	3 (6)	3 (5)	
First breast cancer surgery							
Lumpectomy	203/524 (39)	72/182 (40)	60/167 (36)	37/91 (41)	10/31 (32)	24/53 (45)	
Mastectomy	90/524 (17)	33/182 (18)	34/167 (20)	13/91 (14)	4/31 (13)	6/53(11)	70
Bilateral mastectomy	231/524 (44)	77/182 (42)	73/167 (44)	41/91 (45)	17/31 (55)	23/53 (43)	73
Data missing	160/684 (23)	53/235 (23)	50/217 (23)	30/121 (25)	19/50 (38)	8/61 (13)	
Received radiotherapy	260 (38)	95 (40)	79 (36)	48 (40)	14 (28)	24 (39)	.60
Relatives with breast cancer ^t)						
No family history	122 (18)	39 (17)	32 (15)	27 (22)	9 (18)	15 (25)	
First degree	321 (47)	105 (45)	114 (53)	52 (43)	26 (52)	24 (39)	15
Second degree	189 (28)	69 (29)	58 (27)	35 (29)	12 (24)	15 (25)	46
Third degree	52 (8)	22 (9)	13 (6)	7 (6)	3 (6)	7 (11)	

	OR (95% CI)						
Variable	Unadjusted	Adjusted					
Age at first breast cancer diagnosis, y							
<50	2.97 (2.03-4.35)	2.21 (1.44-3.40)					
≥50	1 [Reference]	1 [Reference]					
Timing of genetic testing							
Before surgery	6.65 (4.45-9.92)	5.79 (3.83-8.76)					
After surgery	1 [Reference]	1 [Reference]					
Family history of breast cance	r						
No family history	1 [Reference]	1 [Reference]					
First-degree relative	0.89 (0.53-1.48)	1.03 (0.57-1.87)					
Second-degree relative	1.05 (0.59-1.84)	0.99 (0.52-1.88)					
Third-degree relative	0.58 (0.26-1.28)	0.63 (0.25-1.56)					
Gene with variant							
BRCA1 or BRCA2	1 [Reference]	1 [Reference]					
ATM	1.45 (0.66-3.18)	1.62 (0.66-3.95)					
CHEK2	0.97 (0.53-1.78)	1.23 (0.63-2.42)					
PALB2	1.03 (0.63-1.67)	1.32 (0.76-2.29)					

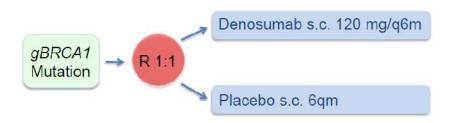
Abbreviation: OR, odds ratio.

RISK GOES BEYOND CANCER DIAGNOSIS....

Reproductive & Psychosocial issues

Reproductive

- Timing of RRSO
- For BRCA1 between 35-40
- For BRCA2 40-45
- Fertility preservation
- PGD pre-implantation genetic diagnosis
- Pregnancy after BC safe
- Premature menopause impact on sexual health, bone health, quality of life


Psychological

- Knowledge of BRCA1/2 status may arrive at a time of great distress
- Multitude of reproductive & therapeutic /risk reducing decision
- Risk reducing measures are often an assault on self-image, "womanhood"
- Far reaching implications for family planning and for extended family

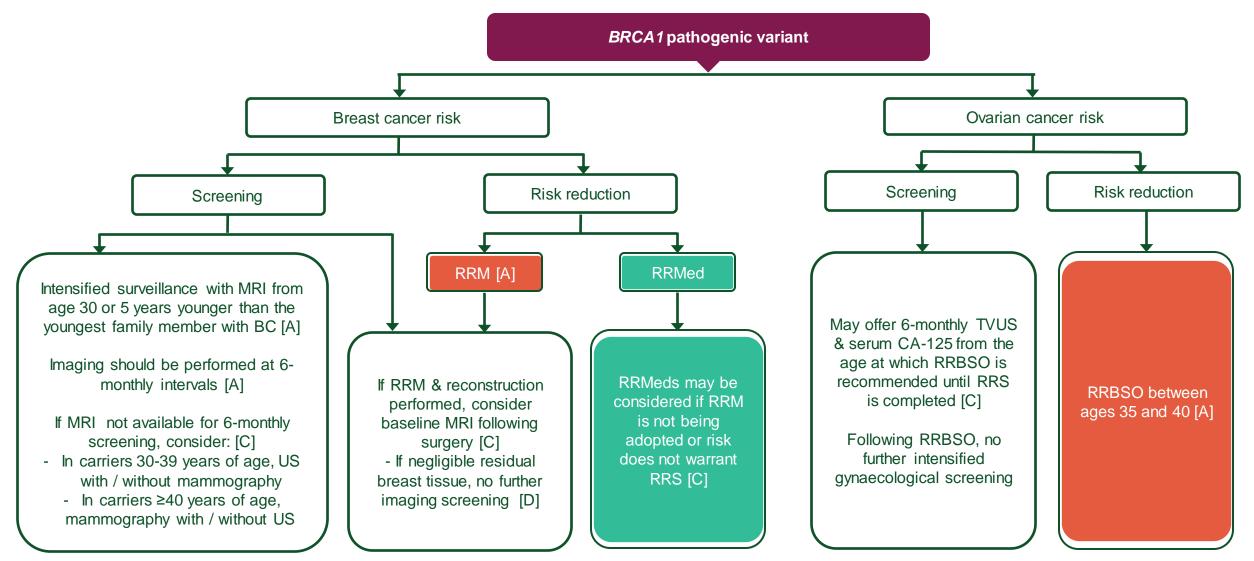
FUTURE DIRECTIONS

- Clinical integration of PRS (polygenic risk score) and adaptation for non-Caucasian populations
- . Novel risk reducing strategies BRCA-P study (NCT04711109)– targeting of RANK/RANKL pathway with denosumab in unaffected *BRCA1* carriers who have not undergone BRRM

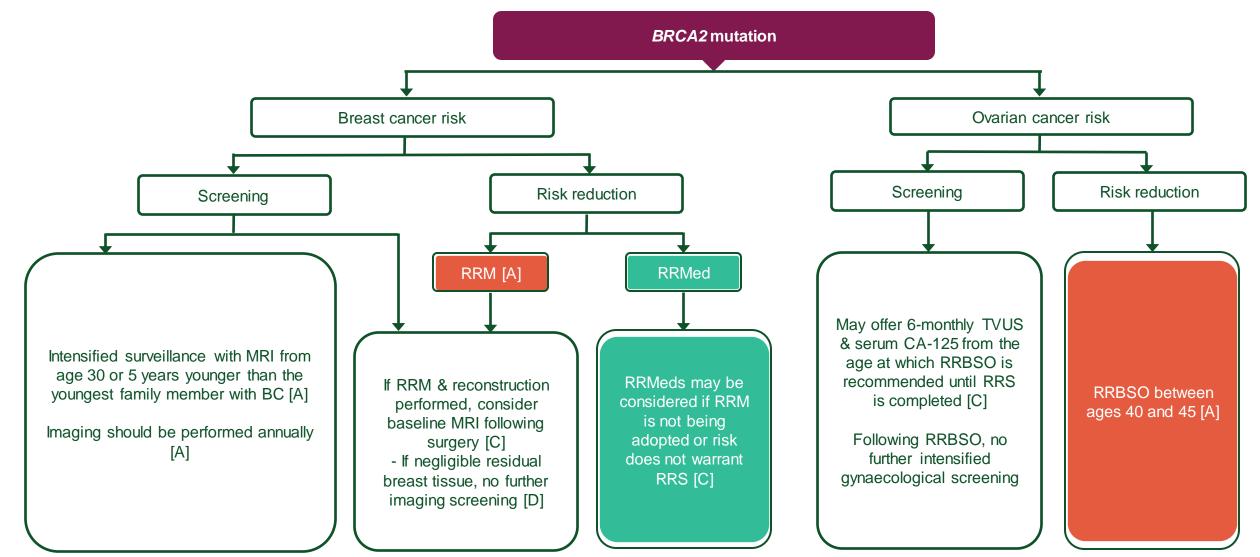
Machine learning algorithms and breast imaging interpretation Liquid biopsies

- Risk is a continuum it varies by gene, by specific variant, by population
- Screening and risk-reduction for individuals with a HBOC syndrome is complex and should be tailored based on risk, family history and patient preference
- In affected carriers choices on ongoing surveillance and risk-reduction must be tailored to stage, natural history of disease and prognosis
- Multi-disciplinary care is critical
- Further research is needed about the management of individuals with HBOC syndromes, particularly those with moderate risk pathogenic variants
- Over-aggressive and non-evidence based screening and risk reducing measures can cause harm
 - "primum non nocere"

SPECIAL ARTICLE


C. Sessa¹, J. Balmaña², S. L. Bober³, M. J. Cardoso⁴, N. Colombo^{5,6}, G. Curigliano^{7,8}, S. M. Domchek⁹, D. G. Evans^{10,11}, D. Fischerova¹², N. Harbeck¹³, C. Kuhl¹⁴, B. Lemley^{15,16}, E. Levy-Lahad¹⁷, M. Lambertini^{18,19}, J. A. Ledermann²⁰, S. Loibl²¹, K.-A. Phillips²² & S. Paluch-Shimon²³, on behalf of the ESMO Guidelines Committee^{*}

¹Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland; ²Medical Oncology Hospital Vall d'Hebron and Hereditary Cancer Genetics Group, Vall d'Hebron Institut of Oncology, Barcelona, Spain; ³Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute/Harvard Medical School, Boston, USA: ⁴Champalimaud Foundation, Breast Unit and Faculdade de Medicina, Lisbon, Portugal: ⁵Department of Gynecologic Oncology, Istituto Europeo di Oncologia e IRCCS, Milan; ⁶Department of Medicine and Surgery, University of Milano-Bicocca, Milan; ⁷Early Drug Development for Innovative Therapies Division, Istituto Europeo di Oncologia, IRCCS, Milan; ⁸Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy; ⁹Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA; ¹⁰Manchester Centre for Genomic Medicine, Division of Evolution Infection and Genomic Sciences, University of Manchester, MAHSC, Manchester; ¹¹Manchester Centre for Genomic Medicine, MAHSC, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK; 12 Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; ¹³Breast Center, Department of Obstetrics & Gynecology and Comprehensive Cancer Center Munich, LMU University Hospital, Munich; 14Department of Diagnostic and Interventional Radiology, University Hospital Aachen, University Hospital Aachen (UKA), RWTH Aachen, Germany; ¹⁵KIU — Patient Organisation for Women with Gynaecological Cancer, Copenhagen, Denmark; ¹⁶Clinical Trials Project, ESGO ENGAGe, Prague, Czech Republic; ¹⁷Medical Genetics Institute, Shaare Zedek Medical Center; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; ¹⁸Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova; ¹⁹Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; ²⁰Department of Oncology, UCL Cancer Institute, University College London and UCL Hospitals, London, UK; ²¹GBG Forschungs GmbH, Neu-Isenburg, Germany; ²²Department of Medical Oncology, Peter MacCallum Cancer Centre and The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; ²³Sharett Institute of Oncology Department, Hadassah University Hospital & Faculty of Medicine Hebrew University, Jerusalem, Israel


ESMO DEEP DIVE: BREAST CANCER

ESMO WEBINAR SERIES

Summary - Screening & Risk Reduction – BRCA1

Summary - Screening & Risk Reduction – BRCA2

shanipal@hadassah.org.il

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org

